Skip to main content

Growth, Structure and Calcification Potential of an Artificial Cyanobacterial Mat

  • Chapter

Abstract

Microbial mats growing on and within light-exposed surfaces harbor complex structured microbial communities of both aerobic, microaerophilic and anaerobic microbes, which in their concerted action exhibit almost closed cycles of carbon, sulfur and other essential elements for biological growth and development (Canfield and Des Marais 1993; van Gemerden 1993; Stal 2000). Diatoms and, primarily, cyanobacteria constitute the major primary producers in most microbial mats. Anoxygenic photosynthetic bacteria (both photoautotrophs and photoheterotrophs) are also abundant, but their contribution to the primary production of mats is regarded minor (Canfield and Des Marais 1993), with the exception of certain hot spring mats (Jorgensen and Nelson 1988) and coastal mats of purple bacteria (van Gemerden et al. 1989). Due to the absence or very minor presence of higher organisms (macrophytes and animals), microbial mats represent well developed microbially driven ecosystems. In extreme environments, like in hypersaline or geothermal waters, microbial mat communities are relatively stable over time periods >1 year and they can develop into cm to m thick cohesive layers consisting of >90% exopolymer and cells (e.g. Krumbein et al. 1977; Jorgensen et al. 1983; DesMarais 1995). Coastal mats in temperate environments are thinner and have a more ephemeral occurrence (Stal et al. 1985; van Gemerden et al. 1989). Intertidal microbial mats play an important role for coastal morphology due to their sediment binding and stabilization properties (Krumbein et al. 1994). In special aquatic environments, like alkaline lakes and tropical intertidal and subtidal zones, sediment trapping by microbial mats in combination with calcification leads to formation of conspicuous solid structures like beachrock lining the intertidal of tropical lagoons (Krumbein 1979b), and laminated cushion (Logan 1961; Dravis 1983; Riding et al.1991; Reid et al. 2000) and dome shaped (Kempe et al. 1991) structures interpreted as living stromatolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed, R.M.M. and Garcia-Pichel, F. (2001) Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. Environ. Microbiol. 3, 53–62.

    Article  Google Scholar 

  • Amemiya,Y. and Nakayama, O. (1984) The chemical composition and metal adsorption capacity of the sheath material isolated from Microcystis, Cyanobacteria. Jap. J. Limnol. 45, 187–193.

    Article  Google Scholar 

  • Bauld, J. (1981) Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81, 87–111.

    Article  Google Scholar 

  • Bauld, J., D’Amelio, E., and Farmer, J.D. (1992) Modern microbial mats. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge Univ. Press, New York, pp. 261–269.

    Google Scholar 

  • Bebout, B. M., Carpenter, S., Des Marais, D. J., and 12 co-authors (2002) Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: Simulating Earths present and past field environments. Astrobiology 2, 383–402.

    Google Scholar 

  • Buczynski, C. and Chafetz, H.S. (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J. Sed. Petrol. 61, 226–233.

    Article  Google Scholar 

  • Calder, J.A. and Parker, P.L. (1973) Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Acta 37, 133–140.

    Article  Google Scholar 

  • Canfield, D.E. and DesMarais, D.J. (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57, 3971–3984.

    Article  Google Scholar 

  • Chafetz, H.S. and Buczynski, C. (1992) Bacterially induced lithification of microbial mats. Palaios 7, 277–293.

    Article  Google Scholar 

  • Cölfen, H. (2001) Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 22, 219–252.

    Article  Google Scholar 

  • Cölfen, H. and Antonietti, M. (1998) Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 4, 582–589.

    Article  Google Scholar 

  • Davies, G.R. (1970) Algal-laminated sediments, Gladstone Embayment, Shark Bay, Western Australia. Am. Soc. Petr. Geol. Mem. 13, 169–205.

    Google Scholar 

  • Decho, A. (1990) Microbial exopolymer secretions in ocean environments: their role(s) in foodwebs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 73–154.

    Google Scholar 

  • DeBeer, D., Kühl, M., Stambler, N., and Vaki, L. (2000) A microsensor study of light enhanced Cat+ uptake and photosynthesis in the reef-building coral Favia sp. Mar. Ecol. Progr. Ser. 194, 75–85.

    Article  Google Scholar 

  • Des Marais, D.J. (1995) The biogeochemistry of hypersaline microbial mats. Adv. Microb. Ecol. 14, 251–274.

    Article  Google Scholar 

  • Dravis, J.J. (1983) Hardened subtidal stromatolites, Bahamas. Science 219, 385–387.

    Article  Google Scholar 

  • Farmer, J. (1992) Grazing and bioturbation in modern microbial mats. In: Schopf, J.W. and Klein, C. (eds.), The proterozoic biosphere. Cambridge Univ. Press, New York, pp. 295–297.

    Google Scholar 

  • Fenchel, T. (1998a) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aq. Microb. Ecol. 14, 235–240.

    Article  Google Scholar 

  • Fenchel, T. (1998b) Artificial cyanobacterial mats: structure and composition of the biota. Aq. Microb. Ecol. 14, 241–251.

    Article  Google Scholar 

  • Fenchel, T. (1998c) Artificial cyanobacterial mats: cycling of C, O, and S. Aq. Microb. Ecol. 14, 253–259.

    Article  Google Scholar 

  • Fenchel, T. and Kühl, M. (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation patterns. Microb. Ecol. 40, 85–93.

    Google Scholar 

  • Ferris, F.G., Wiese, R.G., and Fyfe, W.S. (1994) Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol. J. 12, 1–13.

    Article  Google Scholar 

  • Ferris, F.G., Thompson, J.B., and Beveridge, T.J. (1997) Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios 12, 213–219.

    Article  Google Scholar 

  • Garret, P. (1970) Phanerozoic stromatolites: noncompetitive restriction by grazing and burrowing animals. Science 169, 171–173.

    Article  Google Scholar 

  • van Gemerden, H., Tughan, C.S., de Wit, R., and Herbert, R.A. (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol. Ecol. 62, 87–102.

    Article  Google Scholar 

  • van Gemerden, H. (1993) Microbial mats: a joint venture. Mar. Geol. 113, 3–25.

    Article  Google Scholar 

  • Gerdes, G., Spira, J., and Dimentman C. (1985) The fauna of the Gavish Sabkha and the Solar Lake — a comparative study. In: G.M. Friedman and W.E. Krumbein (eds.), Hypersaline Ecosystems: The Gavish Sabkha, Springer, New York, pp. 322–345.

    Chapter  Google Scholar 

  • Gerdes, G. and Krumbein, W.E. (1987) Biolaminated deposits. In: S. Bhattacharji, G.M. Friedman, H.J. Neugebauer, and A. Seilacher (eds.), Lecture notes in Earth sciences, Springer, Heidelberg, Vol. 9, 1–183.

    Google Scholar 

  • Giani, D., Seeler, J., Giani, L., and Krumbein, W.E. (1989) Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microbiol. Ecol. 62, 151–162.

    Article  Google Scholar 

  • Ginsburg, R.N. (1991) Controversies about stromatolites: Vices and virtues. In: D.W. Müller, J.A. MacKenzie, and H. Weissert (eds.), Controversies in Modern Geology, Academic Press, London, pp. 25–36.

    Google Scholar 

  • Given, R.K. and Wilkinson, B.H. (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J. Sed. Petrology 55, 109–119.

    Google Scholar 

  • Gonzalez-Munoz, M.T., Ben Chekroun, K., Ben Aboud, A., Arias, J.M., and Rodriguez-Gallego, M. (2000) Bacterially induced Mg-calcite formation: role of Mgt+ in development of crystal morphology. J. Sed. Res. 70, 559–564.

    Article  Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipstics? Ann. Rev. Earth Planet. Sci. 27, 313–358.

    Article  Google Scholar 

  • Hartley, A.M., House, W.A., Leadbeater, B.S.C., and Callow, M.E. (1996) The use of microelectrodes to study the precipitation of calcite upon algal biofilms. J. Coll. Interf. Sci. 183, 498–505.

    Article  Google Scholar 

  • Javor, B.J. and Castenholz, R.W. (1984) Invertebrate grazers of microbial mats, Laguna Guerrero Negro, Mexico. In: Y. Cohen, R.W. Castenholz, and H.A. Halvorson (eds.), Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 85–94.

    Google Scholar 

  • Jorgensen, B.B., Revsbech, N.P., and Cohen, Y. (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28, 1075–1093.

    Article  Google Scholar 

  • Jorgensen, B.B. and Nelson, D.C. (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb. Ecol. 16, 133–147.

    Article  Google Scholar 

  • Jorgensen, B.B. (1989) Light penetration, absorption, and action spectra in cyanobacterial mats. In: Y. Cohen and E. Rosenberg (eds.), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Am. Soc. Microbiol., Washington D.C., pp. 123–137.

    Google Scholar 

  • Kazmierczak, J. and Kempe, S. (1998) Bacterial spherulites associated with coccoid cyanobacterial microbialites from Lake Van, Turkey: Clues for the origin of ooids. In: J.C. Canaveras, M.A. Garcia del Cura, and J. Soria (eds.), Abstracts of the 15th International Sedimentological Congress, Universidad de Alicante Press, Alicante, pp. 465–466.

    Google Scholar 

  • Kazmierczak, J., Coleman, M.L., Gruszczynski, M., and Kempe, S. (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeont. Pol. 41, 319–338.

    Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1990) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: V. Ittekkot, S. Kempe, W. Michaelis, and A. Spitzy (eds.), Facets of Modern Biogeochemistry, Springer, Berlin, pp. 255–278.

    Chapter  Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A. (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature (London) 349, 605–608.

    Article  Google Scholar 

  • Knorre, H.v. and Krumbein, W.E. (2000) Bacterial calcification. In: R.E. Riding and S.M. Awramik (eds.), Microbial Sediments, Springer-Verlag, Berlin, pp. 25–31.

    Chapter  Google Scholar 

  • Köhler-Rink, S. and Kühl, M. (2000) Microsensor analysis of photosynthesis and respiration in larger symbiotic foraminifera. 1. The physico-chemical microenvironment of Amphistegina lobifera, Amphisorus hemprichii and Marginopora vertebralis. Mar. Biol. 137, 473–486.

    Article  Google Scholar 

  • Krumbein, W.E., Cohen, Y., and Shilo, M. (1977) Solar Lake (Sinai). 4. Stromatolithic cyanobacterial mats. Limnol. Oceanogr. 22, 635–656.

    Article  Google Scholar 

  • Krumbein, W.E. (1979a) Calcification by bacteria and algae. In: P.A. Trudinger and D.J. Swaine (eds.), Biogeochemical Cycling of Mineral-Forming Elements, Elsevier, Amsterdam, pp. 47–68.

    Chapter  Google Scholar 

  • Krumbein, W.E. (1979b) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to Beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol. J. 1, 139–203.

    Article  Google Scholar 

  • Krumbein, W.E., Paterson, D.M., and Stal, L.J. (1994) Biostabilization of Sediments. BIS-Verlag, Oldenburg.

    Google Scholar 

  • Kühl, M., Lassen, C., and Jorgensen, B.B. (1994). Optical properties of microbial mats: light measurements with fiber-optic microprobes. In L. J. Stal and P. Caumette (eds.), Microbial Mats: Structure, Development and Environmental Significance. Springer, Berlin, pp. 149–167.

    Google Scholar 

  • Kühl, M., Glud, R.N., Ploug, H., and Ramsing, N.B. (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32, 799–812.

    Article  Google Scholar 

  • Kühl, M., Lassen, C., and Revsbech, N.P. (1997). A simple light meter for measurements of PAR (400–700 nm) with fiber-optic microprobes: application for P vs. I measurements in microbenthic communities. Aq. Microb. Ecol.. 13, 197–207.

    Article  Google Scholar 

  • Kühl, M. and Fenchel, T. (2000) Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial cyanobacterial mat. Microb. Ecol. 40, 94–103.

    Google Scholar 

  • Kühl, M. and N.P. Revsbech. (2001) Biogeochemical microsensors for boundary layer studies. In: B.P. Boudreau and B. B. Jorgensen (eds.), The Benthic Boundary Layer. Oxford University Press, New York, pp. 180–210.

    Google Scholar 

  • Logan, B.W. (1961). Cryptozoon and associate stromatolites from the recent of Shark Bay, Western Australia. J Geol. 69, 517–533.

    Article  Google Scholar 

  • McNamara, K. (1992) Stromatolites. Western Australian Museum, Perth.

    Google Scholar 

  • Merz, M. (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26, 81–102.

    Article  Google Scholar 

  • Merz, M. and Zankl, H. (1993) The influence of the sheath on carbonate precipitation by Cyanobacteria. In: F. Baratollo, P. De Castro and M. Parente (eds.), Studies on Fossil Benthic Algae. Bolletino della Societa Palaeontologica Italiana, Special Volume 1, pp. 325–331.

    Google Scholar 

  • Merz-Preiss, M. and Riding, R. (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment. Geol. 126, 103–124.

    Article  Google Scholar 

  • Miller, A.G., Espie, G.S., and Canvin, D.T. (1990) Physiological aspects of CO2 and HCO3transport by cyanobacteria: a review. Can. J. Bot. 68, 1291–1302.

    Article  Google Scholar 

  • Morita, R.Y. (1980) Calcite precipitation by marine bacteria. Geomicrobiol. J. 2, 63–82.

    Article  Google Scholar 

  • Nübel, U., Garcia-Pichel, F., Kühl, M., and Muyzer, G. (1999) Quantifying microbial diversity: Morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65, 422–430.

    Google Scholar 

  • Paerl, H.W., Pinckney, J.L., and Steppe, T. F. (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2, 11–26.

    Article  Google Scholar 

  • Paerl, H.W., Steppe, T.F., and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3, 123–30.

    Article  Google Scholar 

  • Parkhurst, D.L., Thorstenson, D.C., and Plummer, L.N. (1980) PHREEQE — A computer program for geochemical calculations. U.S. Geol. Surv. Wat. Res. Investig. 80–96, 1210.

    Google Scholar 

  • Pentecost, A. and Bauld, J. (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiol. J. 6, 129–135.

    Article  Google Scholar 

  • Pringault, O. and Garcia-Pichel, F. (2000) Monitoring of oxygenic and anoxygenic photosynthesis in a unicyanobacterial biofilm, grown in a benthic gradient chamber. FEMS Microbiol. Ecol. 33, 251–258.

    Article  Google Scholar 

  • Pringault, O., de Wit, R., and Caumette, P. (1996) A benthic gradient chamber for culturing phototrophic sulfur bacteria on reconstituted sediments. FEMS Microbiol. Ecol. 20, 237–250.

    Article  Google Scholar 

  • Pringault, O., de Wit, R., and Kühl, M. (1999a) A microsensor study of the interaction between purple sulfur and green bacteria in experimental benthic gradients. Microb. Ecol. 37, 173–184.

    Article  Google Scholar 

  • Pringault, O., Epping, E., Guyoneaud R., Khalili, A., and Kühl, M. (1999b) Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. Environ. Microbiol. 1, 295–305.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, LG., Paerl, H.W., Pinkney, J.L., Prufert-Bebout, L., Steppe, T.F., and DesMarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern stromatolites. Nature (London) 406, 989–992.

    Google Scholar 

  • Revsbech, N.P., Jorgensen, B.B., Blackburn, T.H., and Cohen, Y. (1983) Microelectrode studies of the photosynthesis and 02, H2S, and pH profiles of a microbial mat. Limnol. Oceanogr. 28, 1062–1074.

    Article  Google Scholar 

  • Riege, H., Gerdes, G., and Krumbein, W.E. (1991) Contribution of heterotrophic bacteria to the formation of CaCO3-aggregates in hypersaline microbial mats. Kieler Meeresforsch. Sonderh. 8, 168–172.

    Google Scholar 

  • Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47 (Suppl.), 179–214.

    Article  Google Scholar 

  • Riding, R., Awramik, S.M., Winsborough, B.M., Griffin, K.M., and Dill, R.F. (1991) Bahamian giant stromatolites–microbial composition of surface mats. Geol. Mag. 128, 227–234.

    Article  Google Scholar 

  • Rivadeneyra, M.A., Delgado, G., Ramos-Cormenzana, A., and Delgado, R. (1998) Biomineralization of carbonates by Halomonas euryhalina in solid and liquid media with different salinities: crystal formation sequence. Res. Microbiol. 149, 277–287.

    Article  Google Scholar 

  • Schopf, J.W. and Klein, C. (eds.) (1992) The Proterozoic Biosphere. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Schopf, J.W. (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: B.A. Whitton and M. Potts (eds.), The Ecology of Cyanobacteria, Kluwer Acad. Publ., Dordrecht, pp. 13–35.

    Google Scholar 

  • Schultze-Lam, S., Ferris, F.G., Sherwood-Lollar, B., and Gerits, J.P. (1996) Ultrastructure and seasonal growth patterns of microbial mats in a temperate climate saline-alkaline lake: Goodenough Lake, British Columbia, Canada. Can. J. Microbiol. 42, 147–161.

    Article  Google Scholar 

  • Schwartz, H.-U., Einselle, G., and Herrn, D. (1975) Quartz-sandy, grazing contoured stromatolites from coastal embayments of Mauritania, West Africa. Sedimentology 22, 529–561.

    Google Scholar 

  • Simkiss, K. (1986) The processes of biomineralization in lower plants and animals. In: B.S.O. Leadbeater and R. Riding (eds.), Biomineralization in Lower Plants and Animals, Oxford Univ. Press, Oxford, pp. 19–36.

    Google Scholar 

  • Somers, G.F. and Brown, M. (1978) The affinity of trichomes of blue-green algae for calcium ions. Estuaries 1, 17–28.

    Article  Google Scholar 

  • Stal, L.J., van Gemerden, H., and Krumbein, W.E. (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol. Ecol. 31, 111–125.

    Article  Google Scholar 

  • Stal, L.J. (2000) Cyanobacterial mats and stromatolites. In: B. A. Whitton & M. Potts (eds.), The Ecology of Cyanobacteria, Kluver Acad. Publ., Dordrecht, pp. 61–120.

    Google Scholar 

  • Tai, C.Y.and Chen, F.-B. (1998) Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE J. 44, 1790–1798.

    Article  Google Scholar 

  • Thar, R., Kühl, M., and Holst, G. (2001) A fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities. Appl. Environ. Microbiol. 67, 2823–2828.

    Article  Google Scholar 

  • Walter, M.R. and Heys, G.R. (1985) Links between the rise of metazoa and the decline of stromatolites. Precambrian Res. 29, 149–174.

    Article  Google Scholar 

  • Warren, L.A., Maurice, P.A., Parmar, N., and Ferris, F.G. (2001) Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol. J. 18, 91–115.

    Google Scholar 

  • Wickstrom, C.E. and Wiegert, R.E. (1980) Response of thermal algal-bacterial mat to grazing by brine flies. Microb. Ecol. 6, 313–315.

    Article  Google Scholar 

  • Wickstrom, C.E and Castenholz R.W. (1985) Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology 66, 1024–1041.

    Article  Google Scholar 

  • Wieland, A. and Kühl, M. (2000) Short-term temperature effects on oxygen and sulfide cycling in a hyper-saline cyanobacterial mat (Solar Lake, Egypt). Mar. Ecol. Progr. Ser. 197, 87–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kühl, M., Fenchel, T., Kazmierczak, J. (2003). Growth, Structure and Calcification Potential of an Artificial Cyanobacterial Mat. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds) Fossil and Recent Biofilms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0193-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0193-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6412-7

  • Online ISBN: 978-94-017-0193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics