Skip to main content

Bacterial Biofilms in Astrobiology: The Importance of Life Detection

  • Chapter
Fossil and Recent Biofilms
  • 701 Accesses

Abstract

Experience gathered by researchers during their hunt for evidence of early life on Earth has shown the difficulties associated with the interpretation of possible microbial fossils (Schopf and Walter, 1983; Schopf, 1999a; Brazier et al., 2001). Indeed the controversy surrounding the earliest life on Earth is akin to the debate (e.g. Thomas-Keprta, 2000; Golden et al., 2000) on the nature of the nano-structures in Martian meteorite ALH84001 described by McKay et al. (1996). Both these examples emphasise the difficulties involved in (a) conclusively identifying structures as fossil bacterial cells and (b) establishing their indigeneity/syngenicity to the host matrix. Better understanding of biological signatures in rocks is, therefore, needed in order to identify traces of microbial life (Knoll, 1999). These traces include not only the characteristic morphologies of potentially fossilised microorganisms, but also include organic biomarker molecules, isotopic fractionations, biological mineralisation and possibly trace element concentrations. It is thus crucial to tackle the problems emerging from the search for evidence of early life on Earth and in exobiological and — palaeontological research with a multi-disciplinary approach (Knoll, 1999). Techniques traditionally applied in the hunt for evidence of early life on Earth included light and electron microscopy for the detection of morphological biomarkers (Schopf, 1999a; Westall, 2000) and gas chromatography — mass spectroscopy (GC-MS) for molecular biomarkers (Peters & Moldowan, 1993). Neither approach however is capable of combining morphological, isotopic and chemical information from individual structures, which is crucial to obtain unambiguous data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders E. (1996) Evaluating the evidence for past life on Mars (letter). Science 274, 2119–2121.

    Article  Google Scholar 

  • Bada J.L. Glavin D.P., McDonald G.D. and Becker L. (1998) A search for endogenous amino acids in Martian meteorite ALH84001. Science. 279, 362 –365.

    Article  Google Scholar 

  • Barrat J.A., Gillet Ph., Lesourd M., Blichert-Toft J.&Popeau G.R. (1999) The Tatahouine diogenite: Mineralogical and chemical effects of sixty-three years of terrestrial residence. Meteorit. Planet. Sci, 34, 91–97.

    Article  Google Scholar 

  • Becker L., Glavin D. P. and Bada J. L. (1997) Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites&polar ice. Geochim. Cosmochim. Acta 61, 475–481.

    Article  Google Scholar 

  • Bradley J.P., Harvey R.P. and McSween H.Y. (1997) No ‘nanofossils’ in Martian meteorite. Nature, 390, 454.

    Article  Google Scholar 

  • Brasier, M.D., Green O.R., Lindsay J.F., Steele A. (2001) Earth’s oldest fossils: questioning the evidence. Nature,in press.

    Google Scholar 

  • Briggs D.E.G., Evershed R.P. and Lockheart M.J. (2000) The biomolecular paleontology of continental fossils. In: Erwin D.H. and Wing S.L. (eds.) Deep time: Paleobiology’s perspective. Paleobiology, 26, 169–193.

    Google Scholar 

  • Briggs D., Brown A. and Vickerman J.C. (eds.) (1989) Handbook of static secondary ion mass spectrometry. John Wileys&Sons, Chichester, UK.

    Google Scholar 

  • Briggs M.H. (1962) Properties of the organic microstructures of some carbonaceous chondrites. Nature, 195, 1076–1077.

    Article  Google Scholar 

  • Carlile, M. J.&Watkinson S.C. (1994) The fungi. Academic Press London, Gen. Ref. Çiftçioglu N., Pelttari A. and Kajander E.O. (1997) Extraordinary growth phases of

    Google Scholar 

  • nanobacteria isolated from mammalian blood. Proceedings of SPIE,3111, 429–435. Claus G. and Nagy B. (1961) A microbiological examination of some carbonaceous chondrites. Nature,192, 594–596.

    Google Scholar 

  • Clemett S.J., Dulay M.T., Gilette J.S., Chillier X.D.F., Mahajan T.B.&Zare R.N. (1998) Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH 84001. Faraday Discussions (Royal Soc. Chem.), 109, 417–436.

    Google Scholar 

  • Collins M.J., Muyzer G., Westbroek P., Curry G.B., Sandberg P.A., Xu S.J., Quinn R. and MacKinnon D. (1991) Preservation of fossils biopolymeric substances. Geochim. Cosmochim. Acta, 55, 2253 — 2257.

    Google Scholar 

  • DeJong E.W., Westbroek P., Westbroek J.F. and Bruning J.W. (1974) Preservation of antigenic properties of macromolecules over 70 Myr. Nature, 252, 63–64.

    Article  Google Scholar 

  • Folk R.L. (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sed. Petrol, 63, 990–999.

    Google Scholar 

  • Frankel R.B. and Buseck P.R. (2000) Magnetite biomineralisation and ancient life on Mars. Current Opinion on Chemical Biology, 4, 171–176.

    Article  Google Scholar 

  • Friedmann E.I., Wierzchos J., Ascaso C. and Winklhofer M. (2001) Special Feature: Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin, Proc. Natl. Acad. Sci, 98, 2176–2181.

    Article  Google Scholar 

  • Gillet Ph., Barrat J.A., Heulin Th., Achouak W., Lesourd M., Guyot F. and Benzerara K. (2000) Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth and Planetary Science Letters, 175, 161–167.

    Article  Google Scholar 

  • Glavin D.P., Schubert M., Botta O., Kminek G. and Bada J.L. (2001) Detecting pyrolysis products from bacteria on Mars. Earth Planet. Sci. Lett, 185, 1–5.

    Article  Google Scholar 

  • Golden D.C., Ming D.W., Schwandt C.S., Lauer H.V.., Socki R., Morris R., Lofgren G.E. and McKay G.A. (2000) Inorganic formation of zoned Fe-Mg-Ca carbonate globules with magnetite and sulphide rims similar to those in Martian meteorite ALH84001. LPSC XXXI, LPI, 13–17 March 2000, Houston, Texas, #1799 (abstr.).

    Google Scholar 

  • Gregory P.H. (1962) Identity of organised elements from meteorites. Nature, 194, 1065.

    Article  Google Scholar 

  • Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T. and Williams S.T. Eds. (1994). Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, USA. Hoover R.B., Rozanov A.Yu., Zhmur S.I. and Gorlenko, V.M. (1998) Further Evidence of

    Google Scholar 

  • Microfossils in Carbonaceous Chondrites. Proc. SPIE,3441, 203–216.

    Google Scholar 

  • Jull A.J.T., Courtney C., Jeffrey D.A. and Beck J.W. (1998). Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites ALH84001 and EETA 79001. Science. 279, 365–369.

    Article  Google Scholar 

  • Kajander O.E., Björkland M. and Çiftçioglu N. (1998) Mineralization by nanobacteria. Proc. SPIE, 3441, 86–94.

    Article  Google Scholar 

  • Kirkland B.L., Lynch F.L., Rahnis M.A., Folk R.L., Molineux I.J. and McLean R.J. (1999)

    Google Scholar 

  • Alternative origins for nanno-bacteria-like objects in calcite. Geology,27, 247–250.

    Google Scholar 

  • Klein, J.&Horejsi, V. (1999) Immunology. Blackwell Scientific Publications, Oxford UK

    Google Scholar 

  • Knoll, A. (1999) Recognition of a biological signature in rock. Discussion summary. In: Size Limits of very small Microorganisms — Proceedings of a Workshop. National Academic Press, Washington D.C., USA, pp. 85–87.

    Google Scholar 

  • Léger A., d’Hendcourt L. and Boccara N. (1987) Polycyclic Aromatic Hydrocarbons and Astrophysics. Reidel, Boston, USA.

    Google Scholar 

  • Liebig K. (1998) Fossil Microorganisms from the Eocene Messel Oil Shale of Southern Hesse, Germany. Kaupia — Darmstätder Beiträge zur Naturgeschichte, 7, 1–95.

    Google Scholar 

  • Lipman C.B. (1932) Amer. Mus. Nov,No. 588.

    Google Scholar 

  • Lowenstein J.M. (1985) Molecular approaches to the identification of species. Am. Sci, 73, 541–546.

    Google Scholar 

  • Lowenstein J.M. (1981) Immunological reactions from fossil material. Phil. Trans. R. Soc. Lond, 292, 143–149.

    Article  Google Scholar 

  • Lowenstein, J.M. (1980) Species specific proteins in fossils. Naturwissenschaften, 67; 343–346.

    Article  Google Scholar 

  • McKay D. S. Gibson E. K. Jr., Thomas-Keprta K. L.&Vali H. (1997) No ‘nanofossils’ in Martian meteorite: reply. Nature 390, 455–456.

    Google Scholar 

  • McKay D.S., Gibson E.K., Thomas-Keprta K., Vali, H., Romanek C., Clemett S., Chillier X.D.F., Maechling C.R.&Zare R.N. (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science. 273, 924–930.

    Article  Google Scholar 

  • Mittlefehldt D. W. (1994) ALH84001, a cumulate orthopyroxenite member of the SNC meteorite group. Meteoritics 29, 214–221

    Article  Google Scholar 

  • Muyzer G., Westbroek P., DeVrind J.P.M., Tanke J., Vriheid T., DeJong E.W., Bruning J.W. and Wehmiller J.F. (1984) Immunology and Organic Geochemistry, Org Geochem, 6, 847–855.

    Article  Google Scholar 

  • Muyzer G and Westbroek P. (1989) An immunohistochemical technique for the localisation of preserved biopolymeric remains in fossils. Geochim. Cosmochim. Acta, 53, 1 699 –1702.

    Google Scholar 

  • Nerlich A.G., Parsche F., Kirsch T., Wiest I. and von der Mark K. (1993) Immunohistochemical detection of interstitial collagens in bone and cartilage tissue remnants from an infant Peruvian mummy. Am. J. Phys. Anthro, 91, 279 — 285.

    Google Scholar 

  • Palik P. (1962) Further life-forms in the Orgueil meteorite. Nature, 194, 1065.

    Article  Google Scholar 

  • Peters K.&Moldowan J.M. (1993) The biomarker guide. Prentice Hall, New Jersey, USA. Posfai M., Buseck P.R., Bazylinski D.A. and Frankel R.B. (1998) Reaction sequence of iron sulphide minerals in bacteria and their use as biomarkers. Science, 280, 880–883.

    Google Scholar 

  • Roy S.K. and Hudson N.P. (1935) The question of living bacteria in stony meteorites. Geological Series of Filed Museum of Natural History, 6, 179–198.

    Google Scholar 

  • Schopf J.W. and Walter M.R. (1983) Archaean microfossils: New evidence of ancient microbes. Pp. 214–239 In: Earth’s Earliest Biospheres, Its Origin and Evolution. J.W. Schopf (ed.). Princeton, New Jersey: Princeton University Press, USA.

    Google Scholar 

  • Schopf, J.W. (1999a) Fossils and pseudofossils: lessons from the hunt for early life on Earth. In: Size Limits of very small Microorganisms — Proceedings of a Workshop. National Academic Press, Washington D.C., USA, pp. 88–93.

    Google Scholar 

  • Schopf J.W. (1999b) Breakthrough Discoveries. In Evolution! Facts and Fallacies (ed. J.W. Schopf) Academic Press, N Y pp. 91–117.

    Google Scholar 

  • Schweitzer M.H.&Homer, J.R. (1999) Intravascular microstructures in trabecular bone tissues of Tyrannosaurus Rex. Annales de Paleontologie, 85, 179–192.

    Article  Google Scholar 

  • Schweitzer M.H., Watt J.A., Avci R., Forster C.A., Krause D.W., Knapp L., Rogers R.R., Beech I.B. and Marshall M. (1999) Keratin specific immunoreactivity in a late cretaceous bird from Madagascar. Accepted Journal of Vertebrate Paleontology.

    Google Scholar 

  • Scott E. R. D., Yamaguchi A.&Krot A. N. (1997) Petrological evidence for shock melting of carbonates in the Martian meteorite ALH 84001. Nature, 387, 377–379.

    Google Scholar 

  • Scott E.R.D. (1999) Origin of carbonate-magnetite-sulphide assemblages in Martian meteorite ALH84001. Jour. Geophys. Res, 104, 3803–3813.

    Article  Google Scholar 

  • Steele, A., Toporski, J., Avci, R., Guidry, S.A.&McKay, D.S. (2001): Time of Flight — Secondary Ion Mass Spectrometry (ToF-SIMS) of a number of bacterial hopanoids. Chemical Geology (In press).

    Google Scholar 

  • Steele A., Goddard D.T., Stapleton D., Toporski J.K.W., Peters V., Bassinger, V., Sharples G., Wynn-Williams D.D.&McKay D.S. (2000a) Imaging of an unknown organism on the Martian Meteorite ALH84001. Meteorit. Plan. Sci, 35, 237–241.

    Article  Google Scholar 

  • Steele A., Toporski J., Westall F., Thomas-Keprta K., Gibson E., Avci R., Whitby C., Griffin C.,&McKay D.S. (2000b) The microbiological contamination of meteorites: a null hypothesis. Lunar Planet. Sci. XXXI, LPI, Houston (abstr.).

    Google Scholar 

  • Steele A., Goddard D.T., Beech LB., Tapper R.C., Stapleton D. and Smith. J.R. (1998) Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001. J Microsc. 189: 2–7

    Article  Google Scholar 

  • Stephan T., Heiss C.H., Rost D.&Jessberger E.K. (1999) Polycyclic aromatic hydrocarbons in meteorites: Allan Hills 84001, Murchison&Orgueil. Lunar Planet. Sci. XXX, LPI, Houston, #1569 (Abstr.).

    Google Scholar 

  • Summons R.E and Walter M.R. (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments Am. J. Sci, 290-A, 212–244.

    Google Scholar 

  • Thomas-Keprta K.L., Clemett S.J., Bazylinski D.A., Kirschvink J.L., McKay D.S., Wentworth S.J., Vali H., Gibson E.K., McKay M.F.&Romanek C.S. (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures, Proc. Natl. Acad. Sci, 98, 2164–2169

    Article  Google Scholar 

  • Thomas-Keprta K.L., Bazylinski D.A., Kirschvink J.L., Clemett S.J., McKay D.S., Wentworth S.J., Vali H., Gibson E.K. Jr. and Romanek C.S. (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochim. Cosmochim. Acta, 64, 4049–4081.

    Article  Google Scholar 

  • Timofejev B.W. (1963) Grana Palynol, 4, 92 (in Russian).

    Article  Google Scholar 

  • Toporski J., Steele A., Westall F., Avci R., Martill M.&McKay D.S. (2001) Morphological and spectral investigation of exceptionally well preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim. Cosmochim. Acta, accepted.

    Google Scholar 

  • Toporski J., Steele A., Westall F., Griffin C., Whitby C., Avci R.&McKay D.S. (2000a) Electron microscopy studies, surface analysis and microbial culturing experiments on a depth profile through Martian meteorite Nakhla. Lunar Planet. Sci. XXXI, LPI, Houston, #1636 (abstr.).

    Google Scholar 

  • Toporski J., Steele A., Westall F., Avci R.&McKay D.S. (2000b) A multi-disciplinary exemplifying case study for in-situ biomarker detection on a 25 ma old bacterial biofilm using in-situ surface analysis and imaging techniques, Abstr. GSA 2000, 12–16 Nov. 2000, Reno, Nevada, USA.

    Google Scholar 

  • Treiman A.H. (2001) A hypothesis for the abiotic&non-Martian origins of putative signs of ancient Martian life in ALH84001. Lunar. Planet. Sci XXXII, LPI, Houston, Texas, #1304 (abstr.).

    Google Scholar 

  • Treiman A.H. and Romanek C.S. (1998) Bulk and stable isotopic compositions of carbonate minerals in Allan Hills 84001: No proof of high formation temperature. Meteorit. Planet. Sci 33, 737–742.

    Article  Google Scholar 

  • Westall F., Steele A., Toporski J., Walsh M., Allen C., Guidry S., McKay D.S., Gibson E.&Chafetz H. (2000) Polymeric substances and biofilms as biomarkers in terrestrial materials: implications for extraterrestrial samples. J. Geophys. Res. — Planets, 105, 24,511–24, 527.

    Google Scholar 

  • Whitby C., Griffin C., Saunders J.R Steele A., Toporski J., Allen C. & McKay D.S. (2000) The direct extraction of DNA from Allende. LPSC XXXI,LPI, 13–17 March 2000, Houston, Texas, USA, #1732 (abstr.).

    Google Scholar 

  • Zhang C., Vali H., Romaneck C.S., Roh Y., Sears S.K. and Phelps T.J (1999) Chemical and morphological characterisation of siderite formed by iron reducing bacteria. Lunar Planet. Sci. XXX, Lunar and Planetary Institute, Houston, #1855 (Abstr.).

    Google Scholar 

  • Zhmur S.&Gerasimenko L. (1999) Biomorph forms in carbonaceous meteorite Allende and possible ecological system-producer of organic matter chondrites. Instruments, Methods and Missions for Astrobiology II, (ed.) RB Hoover, Proc. SPIE, 3755, 48–58.

    Google Scholar 

  • Zolotov M.Y. and Shock E.L. (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases. Meteoritics and Planetary Science, 35, 629–638.

    Article  Google Scholar 

  • Zolotov M. and Shock E. (1999) Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars. J. Geophys. Res, 104 E6, 14.033–14, 050.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toporski, J., Steele, A., McKay, D.S., Westall, F. (2003). Bacterial Biofilms in Astrobiology: The Importance of Life Detection. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds) Fossil and Recent Biofilms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0193-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0193-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6412-7

  • Online ISBN: 978-94-017-0193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics