Skip to main content

Extracellular Polymers (EPS) and Calcification within Modern Marine Stromatolites

  • Chapter

Abstract

Biologically-induced calcification within marine systems is by no means a singular nor unique process. The wide range of organisms and systems in which it occurs suggest a diversity of mechanisms. These have been summarized in reviews (Pentecost 1991; Kempe and Kazmierszak 1994; McConnaughey and Whelan 1997; Simkiss and Wilbur 1989). This work will focus on the role of extracellular polymers (EPS) in calcification within the bacterial biofilms of modern marine stromatolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arp, G., Reimer, A, and Reitner, J. (1999a) Calcification in cyanobacterial biofilms of alkaline salt lakes. Europ JPhycol 34, 393–403.

    Article  Google Scholar 

  • Arp, G., Thiel, V., Reimer, A., Michaelis, W., and Reitner, J. (1999b) Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sed Geol 126, 159–176.

    Article  Google Scholar 

  • Awramik, S.M. (1992) The history and significance of stromatolites, in M.Schidlowski et al., (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources Springer-Verlag, Berlin.

    Google Scholar 

  • Bathurst, R.G.C. (1975) Carbonate sediments and their diagenesis. Developments in Sedimentology Vol. 12. Elsevier, Amsterdam.

    Google Scholar 

  • Borowitzka, M.A. (1982) Morphological and cytological aspects of algal calcification. Int Revs Cytol 74, 127162.

    Google Scholar 

  • Borman, A.H., de Jong, E.W., Thierry, R., Westbroek, P., Bosch, L., Gruter, M., Kamerling, J.P. (1987) Coccolith-associated polysaccharides from cells of Emiliana huxleyi (Haptophyceae). J Phycol 23, 118–123

    Article  Google Scholar 

  • Campbell, A.A., Ebrahimpour, A., Perez, L., Smesko, S.A., Nancollas, G.H. (1989) The dual role of polyelectrolytes and proteins as mineralization promoters and inhibitors of calcium oxalate monohydrate. Calcif Tiss Internat 45, 122–128

    Article  Google Scholar 

  • Castanier, S., Le Metayer-Levrel, G., Perthuisot, J.-P. (2000) Bacterial roles in the precipitation of carbonate minerals, in R.E. Riding and S.M. Awramik (eds.), Microbial Sediments, Springer-Verlag, Berlin, pp. 32–39.

    Chapter  Google Scholar 

  • Chavetz, H.S., and Buczynski, C. (1992) Bacterially induced lithification of microbial mats. Palaios 7, 277–293

    Article  Google Scholar 

  • Decho, A.W. (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Revs 28, 73–154.

    Google Scholar 

  • Decho, A.W. and Kawaguchi, T. (1999) Confocal imaging of in-situ natural microbial communities and their extracellular polymeric secretions using nanoplast resin. BioTechniques 27, 1246–1252.

    Google Scholar 

  • Decho, A.W., Visscher, P.T., and Reid, R.P. (submitted) Cycling and production of natural microbial exopolymers (EPS) within a marine stromatolite. Aquat Microb Ecol

    Google Scholar 

  • Defarge, C., Trichet, J., and Coute, A. (1994) On the appearance of cyanobacterial calcification in modem stromatolites. Sed Geol 94, 11–19.

    Article  Google Scholar 

  • Defarge, C., Trichet, J., Jaunet, A.M., Robert, M., Tribble, J., and Sansome, F.J. (1996) Texture of microbial sediments revealed by cryoscanning electron microsopy. J Sed Res 66, 935–947.

    Google Scholar 

  • De Jong, E.W., Bosch, L., and Westbroek, P. (1976) Isolation and characterization of a Ca2+ -Binding polysaccharide associated with coccoliths of Emiliana huxleyi (Lohmann) Kamptner. Europ JBiochem 70, 611–621.

    Article  Google Scholar 

  • De Philippis, R., and Vincenzini, M. (1988) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Revs 22, 151–175.

    Google Scholar 

  • Dignac, M-F, Urbain, V., Ryacki, D., Bruchet, A., Snidaro, D., and Scribe, P. (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci Technol 38, 45–53.

    Google Scholar 

  • Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K., Steinen, R.P. (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature (London) 324, 55–58

    Article  Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric methods for determination of sugars and related substances. Anal Chem 28, 350–356.

    Article  Google Scholar 

  • Fichtinger-Schepman, A.M., Kamerling, J.P., Versluis, C., and Vliegenthart, J.F.G. (1981) Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxeyi (Lohmann) Kamptner. Carbohydr Res 93, 105–123.

    Article  Google Scholar 

  • Flaibani, A., Olsen, Y., and Painter, T.J. (1989) Polysaccharides in desert reclamation: composition of exocellular proteoglycans complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190, 235–248

    Article  Google Scholar 

  • Flemming, H-C. (1996) The forces that keep biofllms together, in W. Sand (ed.), Biodeterioration and biodegradation. Dechema Monogr 133. VCH, Weinheim.

    Google Scholar 

  • Folk, R.L. (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. JSed Petrol 63, 990–999.

    Google Scholar 

  • Folk, R.L., and Chafetz, H.S. (2000) Bacterially induced microscale and nanoscale carbonate precipitates, in R.E. Riding, and S.M. Awramik (eds.), Microbial Sediments Springer-Verlag, Berlin, pp. 40–49.

    Google Scholar 

  • Grotzinger, J.P., and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Ann Rev Earth Planet Sci 27, 313–358.

    Article  Google Scholar 

  • Gunthorpe, M.E., Sikes, C.S., and Wheeler, A.P. (1990) Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from blue crab exoskeleton. Biol Bull 179, 191–200.

    Article  Google Scholar 

  • Kawaguchi, T., and Watabe, N. (1993) The organic matrices of the shell of the american oyster Crassostrea virginica Gmelin. JExper Mar Biol Ecol 170, 11–28.

    Article  Google Scholar 

  • Kawaguchi, T., and Decho A.W. (2000) Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites. Prep Biochem BioTechnol 30, 321–330.

    Article  Google Scholar 

  • Kawaguchi, T., and Decho A.W. (submitted) How do extracellular polymers (EPS) of cyanobacteria regulate calcification?: A study of marine stromatolites, Bahamas. Amer Mineral.

    Google Scholar 

  • Kempe, S., and Kazmierszak, J. (1994) The role of alkalinity in the evolution of ocean chemistry,organization of living systems and biocalcification processes. Bull L ‘Inst Oceanogr Monaco 13, 61–117.

    Google Scholar 

  • Knorre, H.V., and Krumbien, W.E. (2000) Bacterial Calcification, in R.E. Riding, and S.M. Awramik (eds.), Microbial Sediments. Springer-Verlag, Berlin pp. 25–31.

    Chapter  Google Scholar 

  • Linde, A., Lussi, A., and Crenshaw, M.A. (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tiss Internat 44, 286–295

    Article  Google Scholar 

  • Logan, B.W. (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. JGeol 69, 517–533.

    Google Scholar 

  • Lowenstam, H., and Weiner, S. (1989) On Biomineralization, Oxford Univ. Press, N.Y.

    Google Scholar 

  • Lyons, W.B., Long, D.T., Hines, M.E., Gaudette, H.E., and Armstrong, P.B. (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology 12, 623–626.

    Article  Google Scholar 

  • Macintyre, LG., Prufert-Bebout, L., and Reid, R.P. (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47, 915–921.

    Article  Google Scholar 

  • Marra, M., Palmeri, A., Ballio, A., Segre, A., and Slodki, M.E. (1990) Structural characterization of the exocellular polysaccharide from Cyanospira capsulata. CarbohydrRes, 197, 338–344.

    Google Scholar 

  • Marsh, M.E. (1994) Polyanion-mediated mineralization–assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177, 108–122.

    Article  Google Scholar 

  • Marsh, M.E., Chang, D.-K., and King, G.C. (1992) Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. J Biol Chem 267, 20507–20512

    Google Scholar 

  • McConnaughey, T.A., and Whelan J.F. (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sei Revs 42, 95–117.

    Article  Google Scholar 

  • Meril, C.R., Goldman, D., Sedman, S.A., and Ebert, M.H. (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211, 1437–1438.

    Article  Google Scholar 

  • Merz, M.U.E. (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26, 81102.

    Article  Google Scholar 

  • Merz-PreiB, M. (2000) Calcification in cyanobacteria, in R.E. Riding, and S.M. Awramik (eds.), Microbial Sediments Springer-Verlag, Berlin, pp. 50–56.

    Google Scholar 

  • Monty, C.L.V. (1976) The origin and development of cryptalgal fabric. Devel Sedimentol 20, 193–249.

    Article  Google Scholar 

  • Myklestad, S., and Haug A. (1972) Production of carbohydrates by the marine diatom Chaetoceros affinis (var. willei Gran) Hustedt. 1. Effect of the concentration of nutrients in the culture medium. JExp Mar Biol Ecol 9, 125–136.

    Article  Google Scholar 

  • Neu, T.R., and Marshall, K.C. (1991) Microbial “footprints” — a new approach to adhesive polymers. Biofouling 3, 101–112.

    Article  Google Scholar 

  • Pedley, M. (1992) Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation. Sediment Geol 79, 255–274.

    Article  Google Scholar 

  • Pentecost, A. (1991) Calcification processes in algae and cyanobacteria, in R.Riding (ed.), Calcareous Algae and Stromatolites, Springer-Verlag, Berlin, pp. 3–20.

    Chapter  Google Scholar 

  • Pentecost, A., and Riding R. (1986) Calcification in cyanobacteria, in B.S.C. Leadbeater, and R. Riding (eds.), Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp. 73–90.

    Google Scholar 

  • Ramsing, N.B., Kuhl, M., and Jorgensen, B.B. (1993) Distribution of sulfate-reducing bacteria, 02, and H2S in photosynthetic biofilm determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59, 3840–3849.

    Google Scholar 

  • Reid, R.P., and Browne K.M. (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19, 15–18

    Article  Google Scholar 

  • Reid, R.P., Macintyre, LG., Steneck, R.S., Browne, K.M., and Miller, T.E. (1995) Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33, 1–18.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, LG., Pinckney, J., Paerl, H.W., Prufert-Bebout, L., Steppe, T.F., and Des Marais, D.J. (2000) The role of microbes in accretion, lamination, and lithification in modern marine stromatolites. Nature (London) 406, 989–992.

    Article  Google Scholar 

  • Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Worheide, G., and Gautret, P. (2000) Organic and biogeochemical patterns in cryptic microbialites, in R.E. Riding, and S.M. Awramik (eds.), Microbial Sediments. Springer-Verlag, Berlin, pp. 149–160.

    Chapter  Google Scholar 

  • Riding, R. (1991) Calcified cyanobacteria, in R. Riding (ed.), Calcareous algae and stromatolites. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Riding, R. (1994) Evolution of algal and cyanobacterial calcification, in S. Bengston (ed.), Early evolution on Earth. Nobel Symposium No. 84, Columbia UP, N.Y, pp. 426–43 8.

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, J., and Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.

    Article  Google Scholar 

  • Seong-Joo, L., Browne, K.M., and Golubic, S. (2000) On stromatolite lamination, in R.E. Riding, and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, pp. 16–24.

    Chapter  Google Scholar 

  • Simkiss, K., and Wilbur, K.M. (1989) Biomineralization: Cell Biology and Mineral Deposition. Academic press, San Diego, CA.

    Google Scholar 

  • Sutherland, I.W. (1990) Biotechnology of microbial exopolysaccharides. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Tazaki, K., and Ishida, H. (1996) Bacteria as nucleation sites for autigenic minerals. Geol Soc Japan 102, 866–878.

    Article  Google Scholar 

  • Towbin, H., Staehelin, T., and Gordin, T. (1979) Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets; procedure and some applications. Proc Natl Acad Sci 76, 4350–4354

    Article  Google Scholar 

  • Vasconcelos, C., and McKenzie, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sed Res 67, 378–390

    Google Scholar 

  • Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, LG., Thompson, J.A. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): The role of sulfur cycling. Amer Mineral 83, 1482–1493.

    Google Scholar 

  • Visscher, P.T., Reid, R.P., and Bebout, B.M. (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28, 919–922.

    Article  Google Scholar 

  • Wadda, N., Okazaki, M., and Tachibana, S. (1993) Effects of calcium-binding polysaccharrides from calcareous algae on calcium carbonate polymorphs under conditions of double diffusion. J Crystal Growth 132, 115–121.

    Article  Google Scholar 

  • Walter, M.R. (1977) Interpreting stromatolites. Amer Sci. 65, 563–571.

    Google Scholar 

  • Walter, M.R. (1983) Archean stromatolites: evidence of the earth’s earliest benthos, in J.W. Schopf (ed.),Earth’s earliest biosphere, its origin and evolution. Princeton University Press, N.J, pp. 187–213.

    Google Scholar 

  • Westfall, F., and Rince, Y. (1994) Biofilms, microbial mats and microbe-particle interactions: electron microscope observations from diatomaceous sediments. Sedimentology 41, 147–162.

    Article  Google Scholar 

  • Wheeler, A.P., and Sikes, C.S. (1984) Regulation of carbonate calcification by organic matrix. Amer Zool 24, 933–944.

    Google Scholar 

  • Wheeler, A.P., George, J.W., and Evans, C.A. (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212, 1397–1398.

    Article  Google Scholar 

  • Wheeler, A.P., Rusenko, K.W., and Sikes, C.S. (1988) Organic matrix from carbonate biomineral as a regulator of mineralization, in C.S. Sikes, and A.P. Wheeler (eds.), Chemical aspects of regulation of mineralization. Univ. S. Alabama Publ. Serv, pp. 9–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Decho, A.W., Kawaguchi, T. (2003). Extracellular Polymers (EPS) and Calcification within Modern Marine Stromatolites. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds) Fossil and Recent Biofilms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0193-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0193-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6412-7

  • Online ISBN: 978-94-017-0193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics