Skip to main content

Megalin, cubilin and immunoglobulin light chains: receptor-mediated uptake of light chains in kidney proximal tubule

  • Chapter
Monoclonal Gammopathies and the Kidney

Abstract

Megalin and cubilin are two large endocytic membrane receptors expressed in several tissues but with the highest expression in the renal proximal tubule. The two receptors mediate the endocytic uptake of a large number of substances filtered in the renal glomeruli including proteins, vitamins and trace elements bound to their carrier proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sei USA. 1982;79:5557–61.

    Article  CAS  Google Scholar 

  2. Christensen EI, Nielsen S, Moestrup SK et al. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Eur J Cell Biol. 1995;66:349–64.

    PubMed  CAS  Google Scholar 

  3. Christensen EI. Rapid membrane recycling in renal proximal tubule cells. Eur J Cell Biol. 1982;29:43–9.

    PubMed  CAS  Google Scholar 

  4. Christensen EI, Birn H, Verroust P, Moestrup SK. Membrane receptors for endocytosis in the renal proximal tubule. Int Rev Cytol. 1998;180:237–84.

    Article  PubMed  CAS  Google Scholar 

  5. Zheng G, Bachinsky DR, Stamenkovic I et al. Organ distribution in rats of two members of the low–density lipoprotein receptor gene family, gp330 and LRP/alpa 2MR, and the receptor–associated protein (RAP). J Histochem Cytochem. 1994;42:531–2.

    Article  PubMed  CAS  Google Scholar 

  6. Saito A, Pietromonaco S, Loo AK, Farquhar MG. Complete cloning and sequencing of rat gp330/‘megalin,’ a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sei USA. 1994;91:9725–9.

    Article  CAS  Google Scholar 

  7. Hjälm G, Murray E, Crumley G et al. Cloning and sequencing of human gp330, a Ca(2+)–binding receptor with potential intracellular signaling properties. Eur J Biochem. 1996; 239:132–7.

    Article  PubMed  Google Scholar 

  8. Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem. 1998; 379:951–64.

    PubMed  CAS  Google Scholar 

  9. Raychowdhury R, Niles JL, McCluskey RT, Smith JA. Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science. 1989;244:1163–5.

    Article  PubMed  CAS  Google Scholar 

  10. Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI. Receptor–associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol. 2000;11:191–202.

    PubMed  CAS  Google Scholar 

  11. Moestrup SK, Birn H, Fischer PB et al. Megalin–mediated endocytosis of transcobalamin–vitamin–B12 complexes suggests a role of the receptor in vitamin–B12 homeostasis. Proc Natl Acad Sei USA. 1996;93:8612–17.

    Article  CAS  Google Scholar 

  12. Birn H, Verroust PJ, Nexo E et al. Characterization of an epithelial approximately 460–kDa protein that facilitates endocytosis of intrinsic factor–vitamin B12 and binds receptor–associated protein. J Biol Chem. 1997;272:26497–504.

    Article  PubMed  CAS  Google Scholar 

  13. Nykjaer A, Dragun D, Walther D et al. An endocytic pathway essential for renal uptake and activation of the steroid 25–(OH) vitamin D3. Cell. 1999;96:507–15.

    Article  PubMed  CAS  Google Scholar 

  14. Christensen EI, Moskaug JO, Vorum H et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol. 1999;10:685–95.

    PubMed  CAS  Google Scholar 

  15. Stefansson S, Chappell DA, Argraves KM, Strickland DK, Argraves WS. Glycoprotein 330/low density lipoprotein receptor–related protein–2 mediates endocytosis of low density lipoproteins via interaction with apolipoprotein B100. J Biol Chem. 1995;270:19417–21.

    Article  PubMed  CAS  Google Scholar 

  16. Hammad SM, Stefansson S, Twal WO et al. Cubilin, the endocytic receptor for intrinsic factor–vitamin B(12) complex, mediates high–density lipoprotein holoparticle endocytosis. Proc Natl Acad Sei USA. 1999;96:10158–63.

    Article  CAS  Google Scholar 

  17. Kozyraki R, Fyfe J, Kristiansen M et al. The intrinsic factor–vitamin B12 receptor, cubilin, is a high–affinity apolipoprotein A–I receptor facilitating endocytosis of high–density lipoprotein. Nat Med. 1999;5:656–61.

    Article  PubMed  CAS  Google Scholar 

  18. Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low density lipoprotein receptor–related protein and gp330 bind similar ligands, including plasminogen activator–inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992;267:26172–80.

    PubMed  CAS  Google Scholar 

  19. Kounnas MZ, Loukinova EB, Stefansson S et al. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J Biol Chem. 1995;270:13070–5.

    Article  PubMed  CAS  Google Scholar 

  20. Moestrup SK, Schousboe I, Jacobsen C, Leheste JR, Christensen EI, Willnow TE. beta2–glycoprotein–I (apolipoprotein H) and beta2–glycoprotein–I–phospholipid complex harbor a recognition site for the endocytic receptor megalin. J Clin Invest. 1998;102:902–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hilpert J, Nykjaer A, Jacobsen C et al. Megalin antagonizes activation of the parathyroid hormone receptor. J Biol Chem. 1999;274:5620–5.

    Article  PubMed  CAS  Google Scholar 

  22. Orlando RA, Rader K, Authier F. Megalin is an endocytic receptor for insulin. J Am Soc Nephrol. 1998;9:1759–66.

    PubMed  CAS  Google Scholar 

  23. Leheste JR, Rolinski B, Vorum H et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155:1361–70.

    Article  PubMed  CAS  Google Scholar 

  24. Sousa MM, Norden AG, Jacobsen C et al. Evidence for the role of megalin in renal uptake of transthyretin. J Biol Chem. 2000;275:38176–81.

    Article  PubMed  CAS  Google Scholar 

  25. Cui S, Verroust PJ, Moestrup SK, Christensen EI. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol. 1996;271:F900–7.

    PubMed  CAS  Google Scholar 

  26. Birn H, Fyfe JC, Jacobsen C et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest. 2000;105:1353–61.

    Article  PubMed  CAS  Google Scholar 

  27. Christensen EI, Gliemann J, Moestrup SK. Renal tubule gp330 is a calcium binding receptor for endocytic uptake of protein. J Histochem Cytochem. 1992;40:1481–90.

    Article  PubMed  CAS  Google Scholar 

  28. Kanalas JJ, Makker SP. Analysis of a 45–kDa protein that binds to the Heymann nephritis autoantigen GP330. J Biol Chem. 1993;268:8188–92.

    PubMed  CAS  Google Scholar 

  29. Kounnas MZ, Argraves WS, Strickland DK. The 39–kDa receptor–associated protein interacts with two members of the low density lipoprotein receptor family, alpha 2–macroglobulin receptor and glycoprotein 330. J Biol Chem. 1992;267:21162–6.

    PubMed  CAS  Google Scholar 

  30. Orlando RA, Kerjaschki D, Kurihara H, Biemesderfer D, Farquhar MG. gp330 associates with a 44–kDa protein in the rat kidney to form the Hey mann nephritis antigenic complex. Proc Natl Acad Sei USA. 1992;89:6698–702.

    Article  CAS  Google Scholar 

  31. Zheng G, Zhao MJ, McCluskey RT. Megalin (gp330): a putative endocytic receptor for thyroglobulin (Tg). Endocrinology. 1998;139:1462–5.

    Article  PubMed  CAS  Google Scholar 

  32. Kanalas JJ, Makker SP. Identification of the rat Heymann nephritis autoantigen (GP330) as a receptor site for plasminogen. J Biol Chem. 1991;266:10825–9.

    PubMed  CAS  Google Scholar 

  33. Batuman V, Verroust PJ, Navar GL et al. Myeloma light chains are ligands for cubilin (gp280). Am J Physiol. 1998;275:F246–54.

    PubMed  CAS  Google Scholar 

  34. Moestrup SK, Cui S, Vorum H et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest. 1995;96:1404–13.

    Article  PubMed  CAS  Google Scholar 

  35. Stefansson S, Kounnas MZ, Henkin J et al. gp330 on type II pneumocytes mediates endocytosis leading to degradation of pro–urokinase, plasminogen activator inhibitor–1 and urokinase–plasminogen activator inhibitor–1 complex. J Cell Sei. 1995;108:2361–8.

    CAS  Google Scholar 

  36. Moestrup SK, Nielsen S, Andreasen P et al. Epithelial glycoprotein–330 mediates endocytosis of plasminogen activator–plasminogen activator inhibitor type–1 complexes. J Biol Chem. 1993;268:16564–70.

    PubMed  CAS  Google Scholar 

  37. Kounnas MZ, Chappell DA, Strickland DK, Argraves WS. Glycoprotein 330, a member of the low density lipoprotein receptor family, binds lipoprotein lipase in vitro. J Biol Chem. 1993; 268:14176–81.

    PubMed  CAS  Google Scholar 

  38. Seetharam B, Christensen EI, Moestrup SK, Hammond TG, Verroust PJ. Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor–cobalamin receptor. J Clin Invest. 1997;99:2317–22.

    Article  PubMed  CAS  Google Scholar 

  39. Sahali D, Mulliez N, Chatelet F, Dupuis R, Ronco P, Verroust P. Characterization of a 280–kD protein restricted to the coated pits of the renal brush border and the epithelial cells of the yolk sac. J Exp Med. 1988;167:213–18.

    Article  PubMed  CAS  Google Scholar 

  40. Moestrup SK, Kozyraki R, Kristiansen M et al. The intrinsic factor–vitamin B12 receptor and target of teratogenic antibodies is a megalin–binding peripheral membrane protein with homology to developmental proteins. J Biol Chem. 1998;273:5235–2.

    Article  PubMed  CAS  Google Scholar 

  41. Kozyraki R, Kristiansen M, Silahtaroglu A et al. The human intrinsic factor–vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood. 91:3593–600.

    Google Scholar 

  42. Xu D, Kozyraki R, Newman TC, Fyfe JC. Genetic evidence of an accessory activity required specifically for cubilin brush–border expression and intrinsic factor–cobalamin absorption. Blood. 1999;94:3604–6.

    PubMed  CAS  Google Scholar 

  43. Kristiansen M, Kozyraki R, Jacobsen C, Nexo E, Verroust PJ, Moestrup SK. Molecular dissection of the intrinsic factor–vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. J Biol Chem. 1999;274:20540–4.

    Article  PubMed  CAS  Google Scholar 

  44. Batuman V, Dreisbach AW, Cyran J. Light–chain binding sites on renal brush–border membranes. Am J Physiol (Renal Fluid Electrolyte Physiol.27) 1990;258:F1259–65.

    CAS  Google Scholar 

  45. Batuman V, Guan S. Receptor–mediated endocytosis of immunoglobulin light chains by renal proximal tubule cells. Am J Physiol. 1997;272:F521–30.

    PubMed  CAS  Google Scholar 

  46. Sanders PW, Herrera GA, Chen A, Booker BB, Galla JH. Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo. J Clin Invest. 1988;82:2086–96.

    Article  PubMed  CAS  Google Scholar 

  47. Start DA, Silva FG, Davis LD, D’Agati V, Pirani CL. Myeloma cast nephropathy: immunohisto–chemical and lectin studies. Mod Pathol. 1988;1:336–47.

    PubMed  CAS  Google Scholar 

  48. Lee DB, Drinkard JP, Rosen VJ, Gonick HC. The adult Fanconi syndrome: observations on etiology, morphology, renal function and mineral metabolism in three patients. Medicine (Baltimore) 1972;51:107–38.

    Article  CAS  Google Scholar 

  49. Maldonado JE, Velosa JA, Kyle RA, Wagoner RD, Holley KE, Salassa RM. Fanconi syndrome in adults. A manifestation of a latent form of myeloma. Am J Med. 1975;58:354–64.

    Article  PubMed  CAS  Google Scholar 

  50. Aucouturier P, Bauwens M, Khamlichi AA et al. Monoclonal Ig L chain and L chain V domain fragment crystallization in myeloma–associated Fanconi’s syndrome. J Immunol. 1993; 150: 3561–8.

    PubMed  CAS  Google Scholar 

  51. Leboulleux M, Lelongt B, Mougenot B et al. Protease resistance and binding of Ig light chains in myeloma–associated tubulopathies. Kidney Int. 1995;48:72–9.

    Article  PubMed  CAS  Google Scholar 

  52. Zhai XY, Nielsen R, Birn H et al. Cubilin and megalin mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int. 2000;58:1523–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Birn, H., Leboulleux, M., Moestrup, S.K., Ronco, P.M., Aucouturier, P., Christensen, E.I. (2003). Megalin, cubilin and immunoglobulin light chains: receptor-mediated uptake of light chains in kidney proximal tubule. In: Touchard, G., Aucouturier, P., Hermine, O., Ronco, P. (eds) Monoclonal Gammopathies and the Kidney. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0191-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0191-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6199-7

  • Online ISBN: 978-94-017-0191-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics