Skip to main content

Abstract

This paper presents a unified model for computer-aided tolerancing. It combines the benefits of the Jacobian matrix model and the torsor (or screw) model. The former is based on small displacements modeling of points using 6x6 transformation matrices of open kinematic chains in robotics. The latter models the boundaries of 3-D tolerance zones resulting from a feature’s small displacements using a torsor representation with constraints. The proposed unified model expands the functionalities of the Jacobian model under two important aspects. First, the punctual small displacement variables of the former Jacobian formulation are now considered as intervals formulated and solved using interval-based arithmetic. The equations describing the bounds within which the feature is permitted to move, which are the constraint equations of the torsor formulation, are applied on the unified model. Second, some of the small displacement variables used in the model are eliminated due to the invariant nature of the movements they generate with respect to the toleranced feature. This standard result of the torsor formulation is applied to the unified model. The effect of this is to significantly reduce the unified model size. A example application is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of references

  1. A.A.G. REQUICHA. «Towards a theory of geometric tolerancing», the International Journal of Robotics Research, Vol. 2, n4 , 1983, pp. 45–60.

    Article  Google Scholar 

  2. E. BALLOT, P. BOURDET, F. THIÉBAUT. «Determination of relative situations of parts for tolerance computation», 7th CIRP International Seminar on Computer Aided Tolerancing, ENS de Cachan, France, 2001, April 24–25.

    Google Scholar 

  3. L. RIVEST, C. FORTIN, C. MOREL. «Tolerancing a solid model with a kinematic formulation », Computer-Aided Design, v 26, n6, 1994, pp. 465–485.

    Article  MATH  Google Scholar 

  4. A. DESROCHERS, A. CLÉMENT, A. RIVIÈRE. «Theory and practice of 3D tolerancing for assembly», CIRP International Working Seminar on Tolerancing, Penn. State Univ., 1991, pp. 25–55.

    Google Scholar 

  5. A. WIRTZ. «Vectoriel tolerancing», International Conference on CAD/CAM and AMT in Israël, CIRP session on tolerancing for function in a CAD/CAM environment, Vol. 2, dec. 11–14, 1989.

    Google Scholar 

  6. E. BALLOT.«Lois de comportement géométrique des mécanismes pour le tolérancement », Thèse Ph. D., École Normale Supérieure de Cachan, 1995.

    Google Scholar 

  7. D. GAUNET. «Vectoriel tolerancing model », 3rd CIRP Seminar on Computer Aided Tolerancing, April 27–28, 1993.

    Google Scholar 

  8. A. DESROCHERS. «Modèle conceptuel du dimensionnement et du tolérancement des mécanismes : Représentation dans les systèmes CFAO», Thèse Ph.D., École Centrale de Paris, 1991.

    Google Scholar 

  9. D.E WHITNEY. , J.D. ADAMS. «Application of screw theory to motion analysis of assemblies of rigid parts», Proceedings of IEEE International Symposium on Assembly and Task Planning, Porto, Portugal, July 1999, pp. 75–80

    Google Scholar 

  10. D.E WHITNEY., O.L. GILBERT, M. JASTRZEBSKI. «Representation of geometric variations using matrix transformation for statistical tolerance analysis in assembly», Research in engineering, Vol. 6, 1994, pp.191–210.

    Article  Google Scholar 

  11. K. W CHASE, J. GAO, S. P. MAGLEBY. «Generalized 2-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments», Journal of Design and Manufacturing, Vol. 5, 1995, No. 2.

    Google Scholar 

  12. K. W CHASE, J. GAO, S. P. MAGLEBY. «General 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematics Adjustments», IIE Transactions, 1998, Vol. 30, , pp. 367–377.

    Google Scholar 

  13. A. DESROCHERS, L. RIVEST, C. FORTIN. « Tolerance modeling for 3D analysis: Presenting a kinematic formulation», 3rd CIRP Seminar on Computer Aided Tolerancing, April 27–28,1993.

    Google Scholar 

  14. L. RIVEST, C. MOREL, C. FORTIN. «Tolerancing a solid model with a kinematic formulation», Computer Aided design, Vol. 26, 1994, N 6, pp. 465–485,.

    Google Scholar 

  15. L. LAPERRIERE, P. LAFOND. «Identification of dispersions affecting pre-defined functional requirements of mechanical assemblies » Proc. Of IDMME Conference, Compiège , France, May27–29,1998, pp. 721–728.

    Google Scholar 

  16. L. LAPERRIERE, P. LAFOND. «Tolerances Analysis and synthesis using virtuals joints », 6th CIRP international seminar on computer aided tolerancing, Enschede, Netherlands, March 22–24, 1999, pp 405–414.

    Google Scholar 

  17. A. DESROCHERS. «Determination of Part Position Uncertainty Within Mechanical Assembly Using Screw Parameters», CD-ROM Proc. 25th ASME Design Automation Conference, Las Vegas, 1997, DAC-8587.

    Google Scholar 

  18. P. BOURDET, E. BALLOT. «Équations formelles et tridimensionnelles des chaînes de dimensions dans les mécanismes », Séminaire Tolérancement et chaînes de cotes, fév., 1995, pp. 135–146.

    Google Scholar 

  19. J. TURNER, S. SRIKANTH. «Constraint Representation and Reduction in Assembly Modeling and Analysis», Rensselear Design Research Centre, Tech Report , 1990, No. 90027.

    Google Scholar 

  20. G. ZHANG, M. PORCHET. «Some new developments in tolerance design in CAD », Proceedings of the 19th ASME Annual International Design Automation Conference And Exposition, Albuquerque, Vol. 2, 1993, pp.175–185.

    Google Scholar 

  21. G. ZHANG. « Simultaneous tolerancing for design and manufacturing », Int. J. Prod. Res., Vol. 34, N° 12, 1996, pp. 3361–3382.

    Article  MATH  Google Scholar 

  22. W. GHIE, L. LAPERRIÈRE. «Automatic generation of tolerance chains around functional requirements of mechanical assemblies», CD-ROM Proceeding of 3rd IDMME conference, Montreal, Canada,2000.

    Google Scholar 

  23. E. HANSEN. «Global optimization using interval analysis», Marcel Dekker, ISBN 0–8247 – 8696–3, 1992.

    Google Scholar 

  24. L. LAPERRIÈRE, T. KABORÉ. «Monte Carlo simulation of tolerance synthesis equations », Int. J. Prod. Res., Vol. 39, N° 11, 2001, pp. 2395–2406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghie, W., Laperrière, L., Desrochers, A. (2003). A Unified Jacobian-Torsor Model for Analysis in Computer Aided Tolerancing. In: Gogu, G., Coutellier, D., Chedmail, P., Ray, P. (eds) Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0161-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0161-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6236-9

  • Online ISBN: 978-94-017-0161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics