Skip to main content

Sterol Glucosides and Ceramide Glucosides: Cloning of Enzymes Contributing to Their Biosynthesis

  • Chapter
Advanced Research on Plant Lipids

Abstract

Plant cells contain several groups of glycolipids contributing to the formation and function of plastidial and extraplastidial membranes. The enzymes responsible for the biosynthesis of the three dominating groups of glycosylated diacylglycerols from plastids characterized by monogalactosyl-, digalactosyl- and sulfoquinovosyl headgroups have all been cloned (Dörmann and Benning, 2002) and provide the opportunity to study their functions by using the methods of reverse genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asai, T., Stone, J.M., Heard, J.E., Kovtun, Y., Yorgey, P., Sheen, J. and Ausubel, F.M. (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12, 1823–1836.

    Google Scholar 

  • Bach, T.J. and Benveniste, P. (1997) Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: heterologous expression and complementation analysis of mutations for functional characterization. Prog. Lipid Res. 36, 197–226.

    Google Scholar 

  • Brade, L., Vielhaber, G., Heinz, E. and Brade, H. (2000) In vitro characterization of anti-glucosylceramide rabbit antisera. Glycobiology 10, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Cantatore, J.L., Murphy, S.M. and Lynch, D.V. (2000) Compartmentation and topology of glucosylceramide synthesis. Biochem. Soc. Trans. 28, 748–750.

    Google Scholar 

  • Dickson, R.C. and Lester, R.L. (1999) Yeast sphingolipids. Biochim. Biophys. Acta 1426, 347–357.

    Google Scholar 

  • Doerks, T., Strauss, M., Brendel, M. and Bork, P. (2000) GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Trends Biochem. Sci. 25, 483–485.

    Google Scholar 

  • Dörmann, P. and Benning, C. (2002) Galactolipids rule in seed plants. Trends Plant Sci. 7, 112–118.

    Article  PubMed  Google Scholar 

  • Heinz, E. (1996) Plant glycolipids: structure, isolation and analysis. in Christie, W.W. (ed.), Advances in Lipid Methodology–Three. The Oily Press, Dundee, pp. 211–332.

    Google Scholar 

  • Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K.I. and Hirabayashi, Y. (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. U S A 93, 12654.

    Google Scholar 

  • Jorasch, P., Warnecke, D.C., Lindner, B., Zähringer, U. and Heinz, E. (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur. J. Biochem. 267, 3770–3783.

    Google Scholar 

  • Kawai, G. and Ikeda, Y. (1985) Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. J. Lipid Res. 26, 338–343.

    PubMed  CAS  Google Scholar 

  • Kesselmeier, J., Eichenberger, W. and Urban, B. (1987) Sterols and sterylglycosides of oats (Avena saliva). Distribution in the leaf tissue and medium-induced glycosylation of sterols during protoplast isolation. Physiol. Plantarum 70, 610–616.

    Google Scholar 

  • Koga, J., Yamauchi, T., Shimura, M., Ogawa, N., Oshima, K., Umemura, K., Kikuchi, M. and Ogasawara, N. (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273, 31985–31991.

    Google Scholar 

  • Leipelt, M., Warnecke, D., Zähringer, U., Ott, C., Mailer, F., Hube, B. and Heinz, E. (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J. Biol. Chem. 276, 33621–33629.

    Google Scholar 

  • Lynch, D.V. and Steponkus, P.L. (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol. 83, 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V., Criss, A.K., Lehoczky, J.L. and Bui, V.T. (1997) Ceramide glucosylation in bean hypocotyl microsomes: evidence that steryl glucoside serves as glucose donor. Arch. Biochem. Biophys. 340, 311316.

    Google Scholar 

  • Lynch, D.V. (2000) Enzymes of sphingolipid metabolism in plants. Methods Enzymol. 311, 130–149.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, W. and Preston, R.D. (1974) Cell wall and intercellular region polysaccharides. in Stewart, W.D.P. (ed.), Algal Physiology and Biochemistry. Blackwell Sci. Publ., Oxford, pp. 40–85.

    Google Scholar 

  • Mitchell, A.G. and Martin, C.E. (1997) Fahlp, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. J. Biol. Chem. 272, 28281–28288.

    Google Scholar 

  • Murakami-Murofushi, K., Nishikawa, K., Hirakawa, E. and Murofushi, H. (1997) Heat stress induces a glycosylation of membrane sterol in myxoamoebae of a true slime mold, Physarum polycephalum. J. Biol. Chem. 272, 486–489.

    Google Scholar 

  • Oh, C.S., Toke, D.A., Mandala, S. and Martin, C.E. (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272, 17376–17384.

    Google Scholar 

  • Peng, L., Kawagoe, Y., Hogan, P. and Delmer, D. (2002) Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Read, S.M. and Bacic, T. (2002) Plant biology. Prime time for cellulose. Science 295, 59–60.

    Google Scholar 

  • Rodrigues, M.L., Travassos, L.R., Miranda, K.R., Franzen, A.J., Rozental, S., de Souza, W., Alviano, C.S. and Barreto-Bergter, E. (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect. Immun. 68, 7049–7060.

    Google Scholar 

  • Sakaki, T., Zähringer, U., Warnecke, D.C., Fahl, A., Knogge, W. and Heinz, E. (2001) Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress. Yeast 18, 679–695.

    Article  PubMed  CAS  Google Scholar 

  • Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J. and Jurgens, G. (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 14, 1471–1484.

    PubMed  CAS  Google Scholar 

  • Sperling, P., Zähringer, U. and Heinz, E. (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J. Biol. Chem. 273, 28590–28596.

    Google Scholar 

  • Sperling, P., Ternes, P., Moll, H., Franke, S., Zähringer, U. and Heinz, E. (2001) Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett. 494, 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Sprong, H., Degroote, S., Claessens, T., van Drunen, J., Oorschot, V., Westerink, B.H., Hirabayashi, Y., Klumperman, J., van der Sluijs, P. and van Meer, G. (2001) Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol. 155, 369–380.

    Article  PubMed  CAS  Google Scholar 

  • Sweigard, J.A., Carroll, A.M., Farrall, L., Chumley, F.G. and Valent, B. (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant Microbe. Interact. 11, 404–412.

    Google Scholar 

  • Tamura, K., Mitsuhashi, N., Hara-Nishimura, I. and Imai, H. (2001) Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. Plant Cell Physiol. 42, 1274–1281.

    Article  PubMed  CAS  Google Scholar 

  • Ternes, P., Franke, S., Zähringer, U., Sperling, P. and Heinz, E. (2002) Identification and characterization of a sphingolipid delta4-desaturase family J Biol. Chem. in press.

    Google Scholar 

  • Toledo, M.S., Suzuki, E., Levery, S.B., Straus, A.H. and Takahashi, H.K. (2001) Characterization of monoclonal antibody MEST-2 specific to glucosylceramide of fungi and plants. Glycobiology 11, 105112.

    Google Scholar 

  • Vielhaber, G., Brade, L., Lindner, B., Pfeiffer, S., Wepf, R., Hintze, U., Wittern, K.P. and Brade, H. (2001) Mouse anti-ceramide antiserum: a specific tool for the detection of endogenous ceramide. Glycobiology 11, 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Warnecke, D., Erdmann, R., Fahl, A., Hube, B., Müller, F., Zank, T., Zähringer, U. and Heinz, E. (1999) Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum. J. Biol. Chem. 274, 13048–13059.

    Google Scholar 

  • Warnecke, D.C. and Heinz, E. (1994) Purification of a membrane-bound UDP-glucose:sterol B-Dglucosyltransferase based on its solubility in diethyl ether. Plant Physiol. 105, 1067–1073.

    PubMed  CAS  Google Scholar 

  • Warnecke, D.C., Baltrusch, M., Buck, F., Wolter, F.P. and Heinz, E. (1997) UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli. Plant Mol. Biol. 35, 597–603.

    Google Scholar 

  • Yamashita, T., Wada, R., Sasaki, T.C., Deng, C., Bierfreund, U., Sandhoff, K. and Proia, R.L. (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl. Acad. Sci. U S A 96, 9142–9147.

    Google Scholar 

  • Zank, T.K., Zähringer, U., Beckmann, C., Pohnert, G., Boland, W., Holtorf, H., Reski, R., Lerchl, J. and Heinz, E. (2002) Cloning and functional characterisation of an enzyme involved in the elongation of 46-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hillig, I. et al. (2003). Sterol Glucosides and Ceramide Glucosides: Cloning of Enzymes Contributing to Their Biosynthesis. In: Murata, N., Yamada, M., Nishida, I., Okuyama, H., Sekiya, J., Hajime, W. (eds) Advanced Research on Plant Lipids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0159-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0159-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6210-9

  • Online ISBN: 978-94-017-0159-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics