Skip to main content

Genetic Transformation of Common Bean Via Particle Bombardment

  • Chapter
Applied Genetics of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

  • 237 Accesses

Abstract

Success in bean (Phaseolus vulgaris L.) transformation requires an understanding of both tissue culture and transformations systems. Several techniques have been proposed in order to develop an efficient technology to transform bean. The susceptibility of bean to Agrobacterium has been demonstrated and electroporation or polyethylenglycol (PEG)-mediated transformation has been evaluated. Using the particle bombardment process, transgenic bean plants containing agronomically important traits from several varieties have been obtained. Some aspects influencing the achievement of transgenic P. vulgaris by particle bombardment, limitations and future prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aragào F J L, Barros L M G, Brasileiro ACM, Ribeiro S G, Smith F D, Sanford J C, Faria J C and Rech E L (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor.Appl. Genet., 93 142–150.

    Article  Google Scholar 

  • Aragào F J L, Barros L M G, Sousa M V, Grossi-de-Sá M F, Almeida ERP, Gander E S and Rech E L (1999) Expression of a methionine-rich storage albumin from Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Gen. Mol. Biol, 22: 445–449.

    Article  Google Scholar 

  • Aragào F J L, Brasileiro ACM, Ribeiro S G, Faria J C and Rech E L (1995) Inoculation of bean and soybean with cloned bean golden mosaic virus (BGMV) DNA using particle acceleration. Fitopatol Bras., 20: 642–644.

    Google Scholar 

  • Aragào F J L, Grossi-de-Sá M F, Davey M R, Brasileiro ACM, Faria J C and Rech E L (1993) Factors influ encing transient gene expression in bean (Phaseolus vulgaris L.) using an electrical particle acceleration device. Plant Cell Rep., 12: 483–490.

    Article  Google Scholar 

  • Aragào F J L and Rech E L (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a carioca cultivar. Intl. J. Plant Sci., 158: 157–163.

    Article  Google Scholar 

  • Aragào F J L, Ribeiro S G, Barros L M G, Brasileiro ACM, Maxwell D P, Rech E L and Faria J C (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol. Breed., 4: 491–499.

    Article  Google Scholar 

  • Aragào F J L, Sá M F G, Almeida E R, Gander E S and Rech E L (1992) Particle bombardment-mediated tran sient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L.). Plant Mol. Biol., 20: 357–359.

    Article  PubMed  Google Scholar 

  • Aragào F J L, Sarokin L, Vianna G R and Rech E L (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency. Theor. Appl. Genet., 101: 1–6.

    Article  Google Scholar 

  • Becker J, Vogel T, Iqbal J and Nagl W (1994) Agrobacterium-medmted transformation of Phaseolus vulgaris L. Adaptation of some conditions. Annu. Rep. Bean Improv. Coop. USA., 37: 127–128.

    Google Scholar 

  • Bidney D L, Scelonge C, Martich J, Burrus M, Sims L and Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol., 18: 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Bogo M R, Vainstein M H, Aragäo F J L, Rech E L and Schrank A (1996) High frequency gene conversion among benomyl resistant transformants in the entomopathogenic Mtarhizium anisopliae. FEMS Microbiol. Lett, 142: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro ACM, Aragäo F J L, Rossi S, Dusi DMA, Barros L M G and Rech E L (1996) Susceptibility of common and tepari bean to Agrobacterium spp. strains and improvement of Agro bacterium-mediated trans formation using microprojectile bombardment. J. Amer. Soc. Hort. Sci., 121: 810–815.

    Google Scholar 

  • Bustos M (1991) Transgenic gene expression in Phaseolus vulgaris by direct gene transfer to protoplasts. Plant Mol. Biol. Rep., 9: 322–332.

    Article  CAS  Google Scholar 

  • Carrer H, Hockenberry T N, Svab Z and Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet., 241: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1993a) Philosophy and practice of variety-independent gene transfer into recalcitrant crops. In Vitro Cell. Dev. Biol. Plant, 29: 119–124.

    Article  Google Scholar 

  • Christou P (1993b) Particle gun mediated transformation. Curr. Opin. Biotech., 4: 135–141.

    Article  CAS  Google Scholar 

  • Crepy L, Barros L M G and Valente V R N (1986) Callus production from leaf protoplasts of various cultivars of bean (Phaseolus vulgaris L.). Plant Cell Rep., 5: 124–126.

    Article  CAS  Google Scholar 

  • Danielí H, Krishnan M and McFadden B F (1991) Transient expression of beta-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep., 9: 615–619.

    Google Scholar 

  • Dillen W, Engler G, Van Montagu M and Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep., 15: 119–124.

    Article  CAS  Google Scholar 

  • Finer J J, Vain P, Jones M W and McMullen M D (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep., 11: 323–328.

    Article  CAS  Google Scholar 

  • Franklin C I, Trieu T N, Gonzales R A and Dixon R A (1991) Plant regeneration from seedling expiants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tiss. Org. Cult., 24: 199–206.

    Article  Google Scholar 

  • Franklin C I, Trieu T N, Cassidy B G, Dixon R A and Nelson R S (1993) Genetic transformation of green bean callus via Agrobacterium mediated DNA transfer. Plant Cell Rep., 12: 74–79.

    Article  CAS  Google Scholar 

  • Genga A, Cerjotti A, Bollini R, Bernacchia G and Allavena A (1991) Transient gene expression in bean tissues by high velocity microprojectile bombardment. J. Genet. Breed., 45: 129–134.

    Google Scholar 

  • Gilbertson R L, Faria J C, Hanson S F, Morales F J, Ahlquist P, Maxwell D P and Russel D R (1991) Cloning of the complete DNA genomes of four bean-infecting geminivirus and determining treir infectivity by electric discharge particle acceleration. Phytopathology, 81: 980–985.

    Article  CAS  Google Scholar 

  • Giovinazzo G, Greco V and Bollini R (1993) Optimization of cell suspension culture, protoplast isolation, and transient transformation of Phaseolus vulgaris L. Annu. Rep. Bean Improv. Coop., 36: 14.

    Google Scholar 

  • Grossi de Sá M, Weinberg D F, Rech E L, Barros L M G, Aragäo F J L, Holmstroem K O and Gander E S (1994) Functional studies on a seed-specific promoter from a Brazil nut 2S gene. Plant Sci., 103: 189–198.

    Article  Google Scholar 

  • Kartha K K, Pahl K, Leung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes: soybean, cowpeas, peanut, chickpea and bean. Can. J. Bot., 59: 1671–1679.

    Article  CAS  Google Scholar 

  • Kim J W and Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci., 117: 131–138.

    Article  CAS  Google Scholar 

  • Kim J W and Minamikawa T (1997) Stable delivery of a canavalin promoter-β-glucuronidase gene fusion into French bean by particle bombardment. Plant Cell Physiol, 38: 70–75.

    Article  CAS  Google Scholar 

  • Klein T M and Fitzpatrick-McElligott S F (1993) Particle bombardment: a universal approach for gene transfer to cells and tissues. Curr. Opin. Biotech., 4: 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Klein T M, Wolf E D, Wu R and Sanford J C (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327: 70–73.

    Article  CAS  Google Scholar 

  • Leon P, Planckaert F and Walbot V (1991) Transient gene expression in protoplasts oí Phaseolus vulgaris isolated from a cell suspension culture. Plant Physiol, 95: 968–972.

    Article  PubMed  CAS  Google Scholar 

  • Lewis M E and Bliss F A (1994) Tumor formation and β-glucuronidase expression in Phaseolus vulgaris inoc ulated with Agrobacterium tumefaciens. J. Amer. Soc. Hort. Sci., 119: 361–366.

    CAS  Google Scholar 

  • Lippincott J A, Lippincott B B and Khalifa M D E (1968) Evidence for a tumor-associated factor active in the promotion of crown-gall tumor growth on primary pinto bean leaves. Physiol. Plant., 21: 731–737.

    Article  Google Scholar 

  • Malik K A and Saxena P K (1992) Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct shoot formation in intact seedlings by N-benzylaminopurine and thidiazuron. Planta, 186: 384–389.

    Article  CAS  Google Scholar 

  • Malone-Schoneberg J, Scelonge C J, Burrus M and Bidney D L (1994) Stable transformation of sunflower using Agrobacterium and split embryonic axis expiants. Plant Sci., 103: 199–207.

    Article  CAS  Google Scholar 

  • Mariotti D, Fontana G S and Santini L (1989) Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. J. Genet. Breed., 43: 77–82.

    Google Scholar 

  • Martins I S and Sondahl M R (1984) Axillary bud development from nodal cultures of bean seedlings (Phaseolus vulgaris I,.). Turrialba, 34: 157–161.

    Google Scholar 

  • May G D, Afza R, Mason H S, Wiecko A, Novak F J and Arntzem C J (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology, 13: 486–492.

    Article  CAS  Google Scholar 

  • McCabe D E, Swain W F, Martinell B J and Christou P (1988) Stable transformation of soybean (Glycine max L. Merrill.) by particle acceleration. Bio/Technology, 6: 923–926.

    Article  Google Scholar 

  • McClean P, Chee P, Held B, Simental J, Drong R F and Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues. Plant Cell Tiss. Org. Cult., 24: 131–138.

    Article  Google Scholar 

  • McClean P and Grafton K F (1989) Regeneration of dry bean (Phaseolus vulgaris) via organogenesis. Plant Sci., 60: 117–122.

    Article  Google Scholar 

  • Mohamed M F, Coyne D P and Read P E (1993) Shoot organogenesis in callus induced from pedicel expiants of common bean (Phaseolus vulgaris L.).J.Am. Soc. Hort. Sci., 118: 158–162.

    Google Scholar 

  • Mohamed M F, Read P E and Coyne D P (1992) Plant regeneration from in vitro culture of embryonic axis expiants in common and therapy beans. J. Amer. Soc. Hort. Sci, 117: 332–336.

    Google Scholar 

  • Morel G (1960) Producing virus-free Cymbidiums. Am. Orq. Soc. Bull, 29: 495–497.

    Google Scholar 

  • Morikawa H, Iida A and Yamada Y (1989) Transient expression of foreign genes in plant cells and tissues obtained by simple biolistic device (particle-gun). Appl. Microbiol. Biotech., 31: 320–322.

    Article  CAS  Google Scholar 

  • Nagl W, Ignacimuthu S and Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J. Plant Physiol, 150: 625–644.

    Article  CAS  Google Scholar 

  • Rech E L, De Bern A R and Aragäo F J L (1996) Biolistic mediated gene expression in cattle tissues in vivo. Braz. J. Med. Biol. Res., 29: 1265–1267.

    PubMed  CAS  Google Scholar 

  • Rech E L, Vainstein M H and Davey M R (1991) An electrical particle acceleration gun for gene transfer into cells. Technique, 3: 143–149.

    Google Scholar 

  • Russel D R, Wallace K M, Bathe J H, Martineil B J and McCabe D E (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep., 12: 165–169.

    Google Scholar 

  • Sanford J C (1990) Biolistic plant transformation. Physiol. Plant., 79: 206–209.

    Article  CAS  Google Scholar 

  • Sanford J C, Devit M J, Russel J A, Smith F D, Harpending P R, Roy M K and Johnston S A (1991) An improved, helium-driven biolistic device. Technique, 1: 3–16.

    Google Scholar 

  • Sanford J C, Klein T M, Wolf E D and Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Tech., 5: 27–37.

    Article  CAS  Google Scholar 

  • Sanford J C, Smith F D and Russel J A (1993) Optimizing the biolistic process for different biological applications. Meth. Enzymol, 217: 483–510.

    Article  PubMed  CAS  Google Scholar 

  • Santina S, Blakeslee A F and Avery A G (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot., 27: 895–905.

    Article  Google Scholar 

  • Scorza R, Cordts J M, Ramming D N and Emers R L (1995) Transformation of grape (Vitis vinifera L.) zygotic- derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep., 14: 589–592.

    Article  CAS  Google Scholar 

  • Takeuchi Y, Dotson M and Keen N T (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol, 18: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Vainstein M H, Alves S A, Lima B D, Aragäo F J L and Rech E L (1994) Stable DNA transfection in a flagellate trypanosomatid by microparticle bombardment. Nucleic Acids Res., 22: 3263–3264.

    Article  PubMed  CAS  Google Scholar 

  • Vincentz M, Leite A, Neshich G, Vriend G, Mattar C, Barros L, Weinberg D, Almeida E R, Carvalho M P, Aragào F J L and Gander E S (1997) ACGT and vicilin core sequences in a promoter domain required for seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein. Plant Mol Biol, 34: 879–889.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aragäo, F.J.L. (2003). Genetic Transformation of Common Bean Via Particle Bombardment. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics