Skip to main content

Agrobacterium-Mediated Transformation of Lotus Species

  • Chapter
Applied Genetics of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

  • 229 Accesses

Abstract

Lotus species, and especially Lotus corniculatus, are becoming important alternate forage crops. First, Lotus can be easily grown under a wide range of soil conditions; second, it can be heavily grazed; and third, it does not cause bloat. The development of the culture of Lotus corniculatus is, however, impaired by specificities of that species such as seed shattering, which increase seed cost production, or ploidy number and self-incompatibility, which makes genetic improvement tedious. Genetic engineering of Lotus can help to solve some of the above problems, by allowing the rapid and efficient introduction of agronomically important traits into that species. Several species of Lotus have been transformed using Agrobacterium as a gene transfer system. These include L. corniculatus, L. tenuis, L. angustissimus and L. uliginosus. Lotus species are easily maintained in vivo and in vitro. The efficiency of the regeneration process differs from one species to the other, but overall Lotus species are easily regenerated for calli, explants or cell cultures. In the present chapter, we present a survey of the available protocols for Lotus transformation, with an emphasis on laboratory and procedure tips to allow the people interested in genetic transformation of a novel Lotus species to adapt the existing protocols to the particularities of their favorite species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuin A and Bradley A (1996) Recycling selectable markers in mouse embryonic stem cells. Mol Cell Biol, 16:1851–1856.

    PubMed  CAS  Google Scholar 

  • Akashi R, Uchiyama T, Sakamoto A, Kawamura O and Hoffmann F (1998) High-frequency embryogenesis from cotyledons of bird’s-foot treefoil (Lotus corniculatus) and its effective utilization in Agrobacterium-medium transformation. J. Plant Physiol, 152: 84–91.

    CAS  Google Scholar 

  • Angulo M D and Real M C (1977) A new basic chromosome number in the genus Lotus. Can. J. Bot., 55: 1848–1850.

    Google Scholar 

  • Ausubel F M, Brent R, Kingston R E, Morre D D, Seidman J G, Smith J A and Struhl K (1989) Current Protocols in Molecular Biology. Greene Publishing Associates and Wiley-Interscience, John Wiley, New York.

    Google Scholar 

  • Baker B, Schell J, Borz H and Federoff N (1986) Transposition of the maize controlling element ‘Activator’ in tobacco. Proc. Natl. Acad. Sci. USA, 83: 4844–4848.

    PubMed  CAS  Google Scholar 

  • Banns A B and Thomshow M F (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol, 42: 575–606.

    Google Scholar 

  • Becker D, Kemper E, Schell J and Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol, 20: 1195–1197.

    PubMed  CAS  Google Scholar 

  • Bevan M (1984) Agrobacterium vectors for plant transformation. Nucleic Acid Res., 12: 8711–8721.

    PubMed  CAS  Google Scholar 

  • Bevan M W, Flavell R B and Chilton M D (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature, 304: 184–187.

    CAS  Google Scholar 

  • Campos L P, Raelson J V and Grant W F (1994) Genome relationships among Lotus species based on random amplified polymorphic DNA (RAPD). Theor. Appi Genet., 88: 417–422.

    CAS  Google Scholar 

  • Chang S S, Park S K, Kim B C, Kang B J, Kim D U and Nam H G (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J., 5: 551–558.

    CAS  Google Scholar 

  • Chee P P and Slightom J L (1995) Transformation of soybean (Glycine max) via Agrobacterium tumefaciens and analysis of transformed plants. Methods Mol Biol, 44: 101–119.

    PubMed  CAS  Google Scholar 

  • Cheung A L, Bogorad L, van Montagu M and Schell J (1988) Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc. Natl. Acad. Sci. USA, 85: 391–395.

    PubMed  CAS  Google Scholar 

  • Chilton M D, Currier T C, Farrand S K, Bendich A J, Gordon M P and Nester E W (1974) Agrobacterium tumefaciens and PS8 bacteriophage DNA not detected in grown gall tumors. Proc. Natl Acad. Sci. USA, 71: 3672–3676.

    PubMed  CAS  Google Scholar 

  • Cho H J, Farrand S K, Noel G R and Widhokm J M (2000) High-efficiency induction of soybean hairy-roots and propagation of the soybean cyst nematode. Planta, 210: 195–204.

    PubMed  CAS  Google Scholar 

  • Damiani F, Mariotii D, Pezzoti M and Arcioni S (1985) Variation among plants regenerated from tissue culture of Lotus corniculatus. Z. Pflanzenzuchtg., 94: 332–339.

    Google Scholar 

  • Damiani F, Nenz E, Paolocci F and Arcioni S (1993) Introduction of hygromycin resistance in Lotus ssp. through Agrobacterium rhizogenes transformation. Transgenic Res., 2: 330–335.

    CAS  Google Scholar 

  • De Block M, Betterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, van Montagu M and Leemans J (1987) Engineering herbicide resistance in plants with a detoxyfying enzyme. EMBO J., 6: 2513–2518.

    PubMed  CAS  Google Scholar 

  • de Cleene M and De Ley J (1976) The host range of crown gall. Bot. Rev., 42: 389–466.

    Google Scholar 

  • de Clenne M and De Ley J (1981) The host range of infectious hairy-root. Bot. Rev, 47: 147–194.

    Google Scholar 

  • Dellaporta S L, Wood J and Hicks J B (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep., 1: 19–21.

    CAS  Google Scholar 

  • Dessaux Y, Elasri M, Glickmann E, Oger P, Petit A and Vaudequin-Dransart V (1995) The use of digoxigenin-labelled probes to detect DNA sequences specific for plant pathogenic bacteria. Cell Mol Biol, 41: 933–943.

    PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A and Tempe J (1992) Opines in Agrobacterium biology. In: Molecular Signals in Plant-Microbe Communications (Ed Verma D P S), CRC Press, Boca Raton, Florida, 109–136.

    Google Scholar 

  • Ebunima H, Sugita K, Matsungaga E and Yamakado M (1997a) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc. Natl. Acad. Sci, USA, 94: 2117–2121. Eb

    Google Scholar 

  • Enima H, Sugita K, Matsunaga E, Yamakado M and Komamine (1997b) Principle of MAT vectors. Plant Biotechnol, 14: 133–139.

    Google Scholar 

  • Fraley R T, Rogers S G, Horsch R B, Eichholtz D A, Flick J S, Fink C L, Hoffmann N L and Sanders P R (1985) The SEV system — a new disarmed Ti-plasmid vector system for plant transformation. Nature Biotech., 3: 629–635.

    CAS  Google Scholar 

  • Fraley R T, Rogers S G, Horsch R B, Sanders P R, Flick J S, Adams S P, Bittner M L, Brand L A, Fink C L, Fry J S, Gallupi G R and Goldberg S B (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA, 80: 4803–4807.

    PubMed  CAS  Google Scholar 

  • Frisch D A, Harris-Haller L W, Yokubaitis N T, Thomas T L, Hardin S H and Hall T C (1995) Complete sequence of the binary vector Binl9. Plant Mol. Biol, 27: 405–409.

    PubMed  CAS  Google Scholar 

  • Gamborg O L (1970) The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol, 45: 372–375.

    PubMed  CAS  Google Scholar 

  • Gauthier P, Lumaret R and Bedecarrats A (1997) Chloroplast-DNA variation in the genus Lotus (Fabaceae) and further evidence regarding the maternal parentage of Lotus corniculatus L. Theor. Appl Genet., 95: 629–636.

    CAS  Google Scholar 

  • Gleave A P (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol, 20: 1203–1207.

    PubMed  CAS  Google Scholar 

  • Gleave A P, Mitra D S, Mudge S R and Morris B A (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol, 40: 223–235.

    PubMed  CAS  Google Scholar 

  • Goddjin O J M, van der Dyun Shouten P M, Schilperoort R A and Hoge J H C (1993) A chimeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol Biol, 22: 907–912.

    Google Scholar 

  • Goldsworthy A and Street H E (1965) The carbohydrate nutrition of tomato roots VIII: The mechanism of the inhibition by D-mannose of the respiration of excised roots. Ann. Bot., 29: 45–58.

    CAS  Google Scholar 

  • Grant W F (1996) Seed pod shattering in the genus Lotus (Fabaceae): a synthesis of diverse evidence. Can. J. Plant Sci., 76: 447–456.

    Google Scholar 

  • Grant W F and Marten G C (1985) Birdsfoot trefoil. In: The Science of Grassland Agriculture (Eds Heath M E, Barnes R F and Metcalfe D S), Iowa State University Press, Ames, 98–108.

    Google Scholar 

  • Grant W F and Small E (1996) The origin of the Lotus corniculatus complex: a synthesis of diverse evidence. Can. J. Bot, 74: 975–989.

    Google Scholar 

  • Guerineau F, Brooks L, Meadows J, Lucy A, Robinson C and Mullineaux P (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol, 15: 127–136.

    PubMed  CAS  Google Scholar 

  • Hamill J D, Prescott A and Martin C (1987) Assessment of the efficiency of co-transformation of the T-DNA of disarmed binary vector derived from Agrobacterium tumefaciens. Plant Mol Biol, 9: 573–584.

    CAS  Google Scholar 

  • Hamilton R H and Fall M Z (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experimentia, 27: 229–230.

    CAS  Google Scholar 

  • Handberg K and Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J., 2: 487–496.

    Google Scholar 

  • Hansen G and Wright M S (1999) Recent advances in the transformation of plants. Trends Plant Sci., 4: 226–231.

    PubMed  Google Scholar 

  • Hayford M B, Meldford J I, Hoffman N L, Rogers S G and Klee H J (1988) Development of a plant transformation selection system based on genes encoding gentamycin acetyltransferases. Plant Physiol, 86: 1216–1222.

    PubMed  CAS  Google Scholar 

  • Hellens R P, Edwards E A, Leyland N R, Bean S and Mullineaux P M (2000) pGreen: a versatile and flexible binary Ti vector for Agro bacterium-mediated plant transformation. Plant Mol Biol, 42: 819–832.

    PubMed  CAS  Google Scholar 

  • Hernandez D and de la Fuenta M (1989) Mannose toxicity in Erlich ascities tumor cells. Biochem. Cell Biol, 67: 311–314.

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, de Black M, Messens E, Hernalsteens J P, van Montagu M and Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBOJ., 2: 987–995.

    CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, van Montagu M and Schell J (1983) Expression of chimeric genes transferred into plant cell using a Ti-plasmid-derived vector. Nature, 303: 209–213.

    CAS  Google Scholar 

  • Hille J, Verheggen F, Roelvink P, Franssen H, van Kämmen A and Zabe P (1986) Bleomycin resistance: A new dominant marker for plant cell transformation. Plant Mol Biol, 7: 171–176.

    CAS  Google Scholar 

  • Hoekema A, Hirsch P R, Hooykaas P J J and Schilperoort R A (1983) A binary plant vector based on the separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303: 179–180.

    CAS  Google Scholar 

  • Hoffmann B, Trinh T H, Leung J, Kondorosi A and Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell selection. Mol Plant-Microbe Interact., 10: 307–315.

    CAS  Google Scholar 

  • Hood E E, Gel vin S B, Melchers L S and Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res., 2: 208–218.

    CAS  Google Scholar 

  • Hood E E, Helmer G L, Fraley R T and Chilton M D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo 542 outside of T-DNA. J. Bacteriol., 168: 1291–1301.

    PubMed  CAS  Google Scholar 

  • Irdani T, Bogani P, Mengoni A, Mastromei G and Buiatti M (1998) Construction of a new vector conferring methotrexate resistance in Nicotiana tabacum plants. Plant Mol Biol, 37: 1079–1084.

    PubMed  CAS  Google Scholar 

  • Jiang Q and Gresshoff P M (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant-Microbe Interact., 10: 59–68.

    PubMed  CAS  Google Scholar 

  • Joersbo M, Ddonaldson I, Kreiberg J, Peterson G S, Brunstedt J and Okkels F T (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed., 4: 111–117.

    CAS  Google Scholar 

  • Jones J D, Shlumukov L, Carland F, English J, Schofield S R, Bishop G J and Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res., 1: 285–297.

    PubMed  CAS  Google Scholar 

  • Jones J D G, Svab Z, Harper E C, Hurwitz C D and Maliga P (1987) A dominant nuclear streptomycin resistant marker for plant cell transformation. Mol Gen. Genet., 210: 86–91.

    CAS  Google Scholar 

  • Kojima S, Banno H, Yoshioka Y, Oka A, Machida C and Machida Y (1999) A binary vector plasmid for gene expression in plant cells that is stably maintained in Agrobacterium cells. DNA Res., 6: 407–410.

    PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Murai N and Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Piant J, 10: 165–174.

    CAS  Google Scholar 

  • Kononov M E, Bassuner B and Gelvin S B (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J., 11: 945–957.

    PubMed  CAS  Google Scholar 

  • Larson K (1958) Cytotaxonomical studies in Lotus IV. Somes cases of polyploidy. Tidskr, 54: 44–56.

    Google Scholar 

  • Lyon B R, Llewellyn D J, Huppatz J L, Dennis E S and Peacock W J (1989) Expression of a bacterial gene in transgenic tobacco plants confers resistance to herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol, 13:533–540.

    PubMed  CAS  Google Scholar 

  • McCormac A C, Elliott M C and Chen D F (1997) pBECKS. A flexible series of binary vectors for Agrobacterium-mediated plant transformation. Mol Biotech., 8: 199–213.

    CAS  Google Scholar 

  • McCormac A C, Elliott M C and Chen D F (1999) pBECKS2000: a novel plasmid series for the facile creation of complex binary vectors, which incorporates ‘clean-gene’ facilities. Mol Gen. Genet., 261: 226–235.

    PubMed  CAS  Google Scholar 

  • McGraw R and Beuselink R P (1983) Growth and seed yield characteristics of birdsfoot trefoil. Agron. J., 75: 443–146.

    Google Scholar 

  • Miller H N (1975) Leaf, stem, crown, and root galls induced in Chrysanthemum by Agrobacterium tumefaciens. Phytopathology, 65: 805–811.

    Google Scholar 

  • Montoya A L, Chilton M D, Gordon M P, Sciaki D and Nester E W (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J. Bacteriol, 129: 101–107.

    PubMed  CAS  Google Scholar 

  • Morel G and Wetmore R H (1951) Fern callus culture. Amer. J. Bot., 38: 141–143.

    CAS  Google Scholar 

  • Mozo T and Hooykaas P J (1992) Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation. Mol Gen. Genet., 236: 1–7.

    PubMed  CAS  Google Scholar 

  • Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473–497.

    CAS  Google Scholar 

  • Naughn G W, Smith J, Mazur B and Somerville C (1988) Transformation of Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen. Genet., 211: 266–271.

    Google Scholar 

  • Nenz E, Pupilli F, Paolocci F, Damiani F, Cenci C A and Arcioni S (1996) Plant regeneration and genetic transformation of Lotus angustissimus. Plant Cell Tiss. Org. Cult., 45: 145–152.

    CAS  Google Scholar 

  • Nikolic R, Mitic N and Neskovic M (1997) Evaluation of agronomie traits in tissue culture-derived progeny of bird’s foot trefoil. Plant Cell Tiss. Org. Cult., 48.

    Google Scholar 

  • Oger P, Petit A and Dessaux Y (1996). A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Sci, 116: 159–168.

    CAS  Google Scholar 

  • Olszewski N E, Martin F B and Ausubel F M (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acid Res., 16: 10765–10782.

    PubMed  CAS  Google Scholar 

  • Ooms G, Hooykaas P J J, Moolenaar G and Schilperoort RA (1981) Crown gall plant tumors of abnormal morphology, included by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids: analysis of T-DNA function. Gene, 14: 33–50.

    PubMed  CAS  Google Scholar 

  • Palanichelvam K, Oger P, Clough S J, Cha C, Bent A and Farrand S K (2000) A second T-region on the chrysopine-type soybean-supervirulent Ti plasmid pTi Chry5, and construction of a fully disarmed derivative. Mol Plant Microbe. Interact., 13: 67–72.

    Google Scholar 

  • Pasquali G, Ouwerkerk P B and Memelink J (1994) Versatile transformation vectors to assay the promoter activity of DNA elements in plants. Gene, 149: 373–374.

    PubMed  CAS  Google Scholar 

  • Perez P, Tiraby G, Kallerhoff J and Perret J (1989) Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol. Biol, 13: 365–373.

    PubMed  CAS  Google Scholar 

  • Perl A, Galili S, Shaul O, Ben-Tzvi I and Galili G (1993) Bacterial dihydropicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Nature Biotech., 11: 715–718.

    CAS  Google Scholar 

  • Petit A and Dessaux Y (1994) Opines as selectable markers for plant transformation. In: Plant Molecular Biology Manual (Eds Gelvin S B and Schilperrort R A), Kluwer Academic Press, Dordrecht, 1–12.

    Google Scholar 

  • Petit A, Stoogaard J, Kühle A, Marcker K A and Tempe J (1987) Transformation and regeneration of the legume Lotus corniculatus for molecular studies in symbiotic nitrogen fixation. Mol. Gen. Genet., 207: 245–250.

    CAS  Google Scholar 

  • Petit A, Tempe J, Kerr A, Holsters M, van Montagu M and Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature, 271: 570–572.

    CAS  Google Scholar 

  • Piccirilli M, Pupilli F and Arcioni S (1988) Lotus tenuis Wald, and Kit.: In vitro conditions for plant regeneration from protoplasts and callus of various expiants. Plant Sci., 55: 77–82.

    CAS  Google Scholar 

  • Ponsonnet C and Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol, 161: 300–309.

    PubMed  CAS  Google Scholar 

  • Porsch P, Jahnke A and During K (1998) A plant transformation vector with a minimal T-DNA II. Irregular integration patterns of the T-DNA in the plant genome. Plant Mol Biol, 37: 581–585.

    PubMed  CAS  Google Scholar 

  • Pupilli F, Arcioni S, Damiani F and Pezzotti M (1990) Plant regeneration from callus and protoplast cultures of Lotus pedunculatus Cav. Plant Cell Tiss. Org. Cult., 23: 193–199.

    CAS  Google Scholar 

  • Roberts C, Rajagopal S, Smith L M, Nguyen T A, Yang W, Nugrohu S, Ravi K S, Vijayachandra K, Harcourt R L, Dransfield L, Desamero N, Slamet I, Hadjukiewicz P, Svab Z, Maliga P, Mayer J E, Keese P K, Kilian A and Jefferson R A (2000) A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants. Unpublished; available: http://www.cambia.org.au

    Google Scholar 

  • Rose R J, Nolan K E and Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA somatic embryogenesis. J. Plant Physiol, 155: 788–791.

    CAS  Google Scholar 

  • Ross M D and Jones W T (1985) The origin of Lotus corniculatus. Theor. Appi Genet., 71: 284–288.

    Google Scholar 

  • Savka M A, Ravillion B, Noel G R and Farrand S K (1990) Induction of hairy-roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology, 80: 503–508.

    Google Scholar 

  • Schauser L, Roussis A, Stiller J and Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature, 402: 191–195.

    PubMed  CAS  Google Scholar 

  • Sciaky D, Montoya A L and Chilton M D (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid, 1: 238–253.

    PubMed  CAS  Google Scholar 

  • Seaney R and Henson P R (1970) Birdsfoot trefoil. Agronomy, 22: 119–157.

    Google Scholar 

  • Shah D M, Horsch R B, Klee H J, Kishore G M, Winter J A, Turner N E, Hironaka C M, Sanders P R, Gasser C S, Aykent S, Siegel N R and Rogers S G (1986) Engineering herbicide tolerance in transgenic plants. Science, 233:478–481.

    PubMed  CAS  Google Scholar 

  • Simoens C, Alliotte T, Mendel R, Müller A, Schiemann J, van Lijsebetterns M, Schell J, Van Montagu M and Inze D (1986) A binary vector for transferring genomic libraries to plants. Nucleic Acid Res., 14: 8073–8090.

    PubMed  CAS  Google Scholar 

  • Smith D (1975) Forage management in the north. D. Smith. Dubuque, Iowa, Kendall/Hunt: 117–129.

    Google Scholar 

  • Stalker D M, McBride K E and Malyi L D (1988) Herbicide resistance in transgenic plants expression, a bacterial detoxification gene. Science, 242: 419–123.

    PubMed  CAS  Google Scholar 

  • Stein J C and Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol, 121: 71–79.

    PubMed  CAS  Google Scholar 

  • Stenlid G (1954) Toxic effects of D-mannose, 2-deoxy-D-glucose and D-glucosamine upon respiration and ion adsorption in wheat roots. Physiol. Plant., 7: 173–181.

    Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chain R J, Chiurazzi M and Gresshoff P M (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J. Exp. Bot., 48: 1357–1365.

    CAS  Google Scholar 

  • Stougaard J (1993) Substrate-dependent negative selection in plant using a bacterial cytosine deaminase gene. Plant J, 3: 755–761.

    CAS  Google Scholar 

  • Stougaard J and Beuselinck P R (1996) Registration of GIFU B-129-S9 Lotus japonicus germplasms. Crop Sci., 36: 476.

    Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E and Ebinuma H (2000) Technical advance: A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J., 22:461–469.

    PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E and Ebunima H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep., 18: 941–947.

    CAS  Google Scholar 

  • Swanson E B (1983) Isolation and characterization of variant callus cultures of Lotus corniculatus L. and the in vitro selection of herbicide tolerant plants, University of Guelph, Ontario.

    Google Scholar 

  • Swanson E B, Somers D A and Tomes D T (1990) Birdsfoot trefoil (Lotus corniculatus L.). In: Biotechnology in Agriculture and Forestry, Vol. 10. Legumes and Oilseed Crops I (Ed Bajaj Y P S). Springer-Verlag, Berlin and Heidelberg, 323–340.

    Google Scholar 

  • Swanson E B and Tomes D T (1980) Plant regeneration from cell cultures of Lotus corniculatus L. and the selection and characterization of 2,4-D-tolerant cell lines. Can. J. Bot., 58: 1205–1209.

    CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell, 37: 959–967.

    PubMed  CAS  Google Scholar 

  • Tesar M D (1977) Productivity of Birdsfoot trefoil in Michigan, Pub. CS-LC-7402, Michigan State University.

    Google Scholar 

  • Thompson C J, Movva N R, Tizzard R, Crameri R, Davies J E, Lauwereys M and Botterman J (1987) Characterization of the herbicide resistant gene bar from Streptomyces hygroscopus. EMBO J., 6: 2519–2523.

    PubMed  CAS  Google Scholar 

  • Thykjaer T, Stiller J, Handberg K, Jones J and Stougaard J (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol. Biol, 27: 981–993.

    PubMed  CAS  Google Scholar 

  • Tietze E and Brevet J (1995) Nucleotide sequence of the bacterial streptothricin resistance gene sat3. Biochim. Biophys. Acta, 1263: 176–178.

    Google Scholar 

  • Torisky R S, Kovacs L G, Avdiushko S, Newman J D, Hunt A G and Collins G B (1997) Development of binary vector for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep., 17: 102–108.

    CAS  Google Scholar 

  • Trieu A T, Burleigh S H, Kardailsky IV, Maldonado-Mendoza I E, Versaw W K, Blaylock L A, Shin H, Chiou T Z, Katagi H, Dewbre G R, Weigel D and Harrison M J (2000) Transformation of Medicago truncatula via infiltration of seedlings of flowering plants with Agrobacterium. Pianti, 22: 531–541.

    CAS  Google Scholar 

  • Urabanska K M (1984) Polymorphism of cyanogenesis in Lotus alpinus from Switzerland. II Phynotypic and allelic frequencies upon acid silicate and carbonate. Ber. Geobot. Lnst. ETHStiffung Rubel, 51: 132–163.

    Google Scholar 

  • Van den Elzen P J M, Townsend J, Lee K Y and Bedbrook J R (1985) A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol., 5: 299–302.

    Google Scholar 

  • Vaudequin-Dransart V, Petit A, Poncet C, Ponsonnet C, Nesme X, Jones J B, Bouzar H, Chilton W S and Dessaux Y (1995) Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinilike molecules. Mol. Plant-Microbe Interact., 8: 311–321.

    PubMed  CAS  Google Scholar 

  • Vessabutr S and Grant W F (1995) Isolation, culture and regeneration of protoplasts from birdsfoot trefoil (Lotus corniculatus). Plant Cell Tiss. Org. Cult., 41: 9–15.

    Google Scholar 

  • Vilaine F and Casse-Delbart F (1987) A new vector derived from Agrobacterium rhizogenes plasmids: a micro-Ri plasmid and its use to construct a mini-Ri plasmid. Gene, 55: 105–114.

    PubMed  CAS  Google Scholar 

  • Waldron C, Murphy E B, Roberts J L, Gustafson G D, Armour S L and Malcolm S K (1985) Resistance to hygromycin B. Plant Mol. Biol, 5: 103–108.

    CAS  Google Scholar 

  • Wang Z Y, Takamizo T, Iglesias V A, Osusky M, Nagel J, Potrykus I and Spandenburg G (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Nature Biotech., 10: 691–699.

    CAS  Google Scholar 

  • Webb K J, Gibbs M J, Mizen S, Skot L and Gatehouse J A (1996) Genetic transformation of Lotus corniculatus with Agrobacterium tumefaciens and the analysis of the inheritance of transgenes in the T1 generation. Transgenic Res., 5: 303–312.

    CAS  Google Scholar 

  • Wench A, Czako M, Kanevshi I and Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol, 34: 913–922.

    Google Scholar 

  • Ziang C, Han P, Lutziger I, Wang K and Oliver D J (1999) A mini binary vector series for plant transformation. Plant Mol Biol, 40: 711–717.

    Google Scholar 

  • Zambryski P C (1988) Basic process underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Plant Physiol, 22: 1–30.

    CAS  Google Scholar 

  • Zambryski P, Joos H, Genetollo C, Leemans J, van Montagu M and Schell J (1993) Ti plasmid vector for the introduction of DNA into plant cells without alternation of their normal regeneration capacity. EMBO J., 2: 2143–2150.

    Google Scholar 

  • Zyprian E and Kado C I (1990) Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Mol Biol, 15: 245–256.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oger, P., Dessaux, Y. (2003). Agrobacterium-Mediated Transformation of Lotus Species. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics