Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

Abstract

The Medicago genus includes the world’s most widely grown forage legume, the perennial Medicago sativa, as well as annual pasture legumes such as the model legume Medicago truncatula. Transformation of all Medicago species, until quite recently, was dependent on a high frequency of regeneration by somatic embryogenesis. Obtaining high rates of regenera-bility and the use of Agrobacterium tumefaciens have been the keys to transformation. High rates of regenerability have been obtained through identification of highly regenerable genotypes, recurrent selection and cycling through tissue culture. High regenerability can be transferred to suitable agronomic lines by traditional breeding techniques. Selection of a suitably virulent A. tumefaciens will aid transformation, and the selected strain needs to be used with the most suitable antibiotic to prevent overgowth. Kanamycin, hygromycin and phos-phinothricin are all suitable as selection agents. A new generation of selectable markers or a strategy to eliminate the marker transgene are desirable for future field releases to overcome negative perceptions in the public domain of antibiotic resistance and herbicide resistance markers. More recent in planta transformation techniques in M. truncatula have facilitated the production of large numbers of transgenics (e.g. insertional mutants) and the robustness and general applicability to the Medicago genus needs to be assessed. Transgenic strategies in Medicago have developed to the stage that defined genes can most likely be introduced into the cultivar of choice. The assessment of transgenes for agronomic performance is well advanced in Medicago. Genetic modification using cell fusion has also been successful in the Medicago genus. Asymmetric and highly asymmetric hybridisations are strategies that are technically feasible. Future developments in regenerability and transformation are likely to lead to simpler and more rapid strategies for the production of transgenics that can also be applied to other legumes. Research in the model legume M. truncatula will also contribute new genetic knowledge that can be applied directly to the Medicago genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcioni S, Davey M R, Dos Santos A V P and Cocking E C (1982) Somatic embryogenesis in tissues from mesophyll and cell suspension protoplasts of Medicago coerula and M. glutinosa. Z. Pflanzenphysiol., 106: 105–110.

    CAS  Google Scholar 

  • Barker D G, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P, Muel X, Tourneur J, Denarie J and Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol. Biol. Rep., 8: 40–49.

    Article  CAS  Google Scholar 

  • Bauchrowitz M A, Barker G and Truchet G (1996) Lectin genes are expressed throughout root nodule development and during nitrogen fixation in the Rhizobium-Medicago symbiosis. Plant J., 9: 31–43.

    Article  CAS  Google Scholar 

  • Bingham E T, Hurley L V, Kaatz D M and Saunders J W (1975) Breeding alfalfa which regenerates from callus tissue in culture. Crop Sci., 15: 719–721.

    Article  Google Scholar 

  • Bingham E T, McCoy T J and Walker K A(1988) Alfalfa tissue culture. In: Alfalfa and Alfalfa Improvement, Vol. 29, American Society of Agronomy, 903–929.

    Google Scholar 

  • Bowley S R, Kielly G A, Anandarajah K, Mckersie B D and Senaratna T (1993) Field evaluation following two cycles of backcross transfer of somatic embryogenesis to commercial alfalfa germplasm. Can. J. Plant Sci., 73:131–137.

    Article  Google Scholar 

  • Brown D C W and Atanassov A (1985) Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tiss. Org. Cult, 4: 111–132.

    Article  Google Scholar 

  • Chabaud M, Passiatore J E, Cannon F and Buchanan-Wollaston V (1988) Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep., 7: 512–516.

    Article  CAS  Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C and Huguet T (1996) Transformation of barrel medic (Medicago truncatula Gaetrn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep., 15:305–310.

    CAS  Google Scholar 

  • Charon C, Sousa C, Crespi M and Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell, 11: 1953–1965.

    PubMed  CAS  Google Scholar 

  • Christou P (1994) The biotechnology of crop legumes. Euphytica, 74: 165–185.

    Article  Google Scholar 

  • Cook D R (1999) Medicago truncatula — a model in the making! Curr. Opin. Plant Biol., 2: 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Crawford E J, Lake A W H and Boyce K G (1989) Breeding annual Medicago species for semi-arid conditions in Southern Australia. Adv. Agron., 42: 399–437.

    Article  Google Scholar 

  • Crea F, Calderini O, Nenz E, Cluster P D, Damiani F and Arcioni S (1997) Chromosomal and molecular rearrangements in somatic hybrids between tetraploid Medicago sativa and diploid Medicago falcata. Theor. Appl. Genet., 95: 1112–1118.

    Article  CAS  Google Scholar 

  • Damiani F and Arcioni S (1991) Transformation of Medicago arborea L. with an Agrobacterium rhizogenes binary vector carrying the hygromycin resistance gene. Plant Cell Rep., 10: 300–303.

    Article  CAS  Google Scholar 

  • Deak M, Kiss G B, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium-mediated gene transfer. Plant Cell Rep., 5: 97–100.

    Article  CAS  Google Scholar 

  • Denchev P D, Kuklin A I, Atanassov A I and Scragg A H (1993) Kinetic studies of embryo development and nutrient utilization in an alfalfa direct somatic embryogenie system. Plant Cell Tiss. Org. Cult., 33: 67–73.

    Article  Google Scholar 

  • Desgagnes R, Laberge S, Allard G, Khoudi H, Castonguay Y, Lapointe J, Michaud R and Vezina L P (1995) Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa L.). Plant Cell Tiss. Org. Cult., 42: 129–140.

    Article  Google Scholar 

  • Du S, Erickson L and Bowley S (1994) Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens. Plant Cell Rep., 13: 330–334.

    CAS  Google Scholar 

  • Dudits D, Bogre L and Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitroJ. Cell Sci., 99: 475–484.

    Google Scholar 

  • Frugis G, Caretto S, Santini L and Mariotti D (1995) Agrobacterium rhizogenes rol genes induce productivity-related modifications in ‘creeping-rooted’ alfalfa types. Plant Cell Rep., 14: 488–492.

    Article  CAS  Google Scholar 

  • Gilmour D M, Davey M R and Cocking E C (1987) Plant regeneration from cotyledon protoplasts of wild Medicago species Plant Sci., 48: 107–112.

    Article  Google Scholar 

  • Gyorgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E and Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol. Biol., 16: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Halk E L, Merlo D J, Liao L W, Jarvis N P, Nelson S E, Krahn K J, Hill K K, Rashka, K E and Loesch-Fries L S (1989) Resistance to alfalfa mosaic virus in transgenic tobacco and alfalfa. In: Molecular Biology of Plant-Pathogen Interactions, Vol. 101 (Eds Staskawicz B, Ahlquist O and Yoder P), Alan R Liss Inc., New York, 283–296.

    Google Scholar 

  • Hernandez-Fernandez M M and Christie B R (1989) Inheritance of somatic embryogenesis in alfalfa (Medicago sativa L.). Genome, 32: 318–321.

    Article  Google Scholar 

  • Hinnisdaels S, Jacobs M and Negrutiu I (1994) Asymmetric somatic hybrids. In: Biotechnology in Agriculture and Forestry. Vol. 27, Somatic Hybridization in Crop Improvement I (Ed. Bajaj Y P S), Springer-Verlag, Berlin, 57–71.

    Google Scholar 

  • Hoffmann B, Trinh T H, Leung J, Kondorosi A and Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant Microbe Interact., 10: 307–315.

    Article  CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott M C and Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep., 18: 904–910.

    Article  CAS  Google Scholar 

  • Ibragimova S S and Smolenskaya S E (1997) Plant regeneration from seedling apex in annual medics. Acta Agronómica Hungarica, 45: 109–116.

    Google Scholar 

  • Jayasena K W, Hajimorad M R, Law E G, Rehman A-U, Nolan K E, Zanker T, Rose R J and Randies J W (2001) Resistance to Alfalfa mosaic virus in transgenic barrel medic lines containing the virus coat protein gene. Aust. J.Agri. Res., 52: 67–72.

    Article  Google Scholar 

  • Johnson L B, Stuteville D L, Higgins R K and Skinner D Z (1981) Regeneration of alfalfa plants from protoplasts of selected Regen S clones. Plant Sci. Lett., 20: 297–304.

    Article  Google Scholar 

  • Kamate K, Rodriguez-Llorente I D, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi, A and Trinh T H (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep., 19: 647–653.

    Article  CAS  Google Scholar 

  • Kao K N and Michayluck M R (1980) Plant regeneration from mesophyll protoplasts of alfalfa. Z. Planzenphysiol, 96: 135–141.

    Google Scholar 

  • Kielly G A and Bowley S R (1992) Genetic control of somatic embryogenesis in alfalfa. Genome, 35: 474–477.

    Article  Google Scholar 

  • Kuchuk N, Komarnitski I, Shakhovsky A and Gleba Y (1990) Genetic transformation of Medicago species by Agrobacterium tumefaciens and electroporation of protoplasts. Plant Cell Rep., 8: 660–663.

    Article  CAS  Google Scholar 

  • Li X-Q and Demarly Y (1995) Characterization of factors affecting regeneration frequency of Medicago lupulina L. Euphytica, 86: 143–148.

    Article  Google Scholar 

  • Li, X-Q and Demarly Y (1996) Somatic embryogenesis and plant regeneration in Medicago suffruticosa. Plant Cell Tiss. Org. Cult, 44: 79–81.

    Article  CAS  Google Scholar 

  • Li X-Q, Teoule E, Dattee Y, and Demarly Y (1986) Plant regeneration by in vitro culture of inflorescence axis of Medicago lupulina L. C. R. Acad. Sci. Paris, 303: 601–606.

    CAS  Google Scholar 

  • Li Y-G, Tanner G J, Delves A C and Larkin P J (1993) Asymmetric somatic hybrid plants between Medicago sativa L. (alfalfa, lucerne) and Onobrychis viciifolia Scop (sainfoin). Theor. Appl. Genet., 87: 455–463.

    Google Scholar 

  • Maheswaran G and Williams E G (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa, and rapid clonal propagation of T. repens. Ann. Bot., 54: 201–211.

    Google Scholar 

  • Mariotti D, Arcioni S and Pezzotti M (1984) Regeneration of Medicago arborea L. plants from tissue and protoplast cultures of different organ origin. Plant Sci. Lett., 37: 149–156.

    Article  Google Scholar 

  • Masoud S A, Zhu Q, Lamb C and Dixon R A (1996) Constitutive expression of an inducible beta-1,3- glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma i sp medicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Res., 5: 313–323.

    Article  CAS  Google Scholar 

  • McKersie B D and Brown D C W (1996) Somatic embryogenesis and artificial seeds in forage legumes. Seed Science Res., 6: 109–126.

    Google Scholar 

  • McKersie B D, Bowley S R and Jones K S (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 119: 839–847.

    Article  PubMed  CAS  Google Scholar 

  • McKersie B D, Chen Y R, Debeus M, Bowley S R, Bowler C, Inze D, Dhalluin K and Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol., 103: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Meijer E G M and Brown D C W (1985) Screening of diploid Medicago sativa germplasm for somatic embryogenesis. Plant Cell Rep., 4: 285–288.

    Article  Google Scholar 

  • Meijer E G M and Brown D C W (1987) A novel system for rapid high frequency somatic embryogenesis in Medicago sativa. Physiol. Plant., 69: 591–596.

    Article  CAS  Google Scholar 

  • Mendis M H, Power J B and Davey M R (1991) Somatic hybrids of the forage legumes Medicago sativa L. and Medicago falcata L. J. Exp. Bot., 42: 1565–1573.

    Article  Google Scholar 

  • Mgroginski L A and Karther K K (1984) Tissue culture of legumes for crop improvement. Plant Breeding Rev, 2:215–263.

    Google Scholar 

  • Micaleff M C, Austin S and Bingham E T (1995) Improvement of transgenic alfalfa by backcrossing. In Vitro Cell. Dev. Biol. Plant., 31: 187–192.

    Article  Google Scholar 

  • Michaud E, Leman W F and Rumbaugh M D (1988) World distribution and historical development. In: Alfalfa and Alfalfa Improvement, Vol. 29, American Society of Agronomy, 25–91.

    Google Scholar 

  • Nagarajan P, McKenzie J S and Walton P D (1986) Embryogenesis and plant regeneration of Medicago species in tissue culture. Plant Cell Rep., 5: 77–80.

    Article  Google Scholar 

  • Nenz E, Pupilli F, Damiani F, and Arcionim S (1996) Somatic hybrid plants between the forage legumes Medicago sativa L. and Medicago arborea L. Theor. Appl. Genet., 93: 183–189.

    Article  Google Scholar 

  • Ninkovic S, Miljusdjuka J and Neskovic M (1995) Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tiss. Org. Cult., 42: 255–260.

    Article  CAS  Google Scholar 

  • Nolan K E, Rose R J and Gorst J G (1989) Regeneration of Medicago truncatula from tissue culture : increased somatic embryogenesis using expiants from regenerated plants. Plant Cell Rep., 8: 278–281.

    Article  Google Scholar 

  • Nolan K E and Rose R J (1998) Plant regeneration from cultured Medicago truncatula with particular reference to abscisic acid and light treatments. Aust. J. Bot., 46: 151–160.

    Article  CAS  Google Scholar 

  • Oommen A, Dixon R A and Paiva N L (1994) The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell, 6: 1789–1803.

    PubMed  CAS  Google Scholar 

  • Pereira L F and Erickson L (1995) Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Rep., 14: 290–293.

    Article  CAS  Google Scholar 

  • Pezzotti M, Pupilli F, Damiani F and Arcioni S (1991) Transformation of Medicago sativa L. using a Ti plasmid derived vector. Plant Breed., 106: 39–46.

    Article  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci., 5: 273–274.

    Article  PubMed  CAS  Google Scholar 

  • Pupilli F, Scarpa G M, Damiani F and Arcioni S (1992) Production of interspecific somatic hybrid plants in the genus Medicago through protoplast fusion. Theor. Appl. Genet., 84: 792–797.

    Google Scholar 

  • Ramaiah, S M and Skinner D Z (1997) Particle bombardment — a simple and efficient method of alfalfa (Medicago sativa L.) pollen transformation. Curr. Sci., 73: 674–682.

    Google Scholar 

  • Reisch B and Bingham E T (1980) The genetic control of bud formation from callus cultures of diploid alfalfa. Plant Sci. Lett., 20: 71–77.

    Article  Google Scholar 

  • Rose R J and Nolan K E (1995) Regeneration of Medicago truncatula from protoplasts isolated from kanamycin-sensitive and kanamycin-resistant plants. Plant Cell Rep., 14: 349–354.

    Article  CAS  Google Scholar 

  • Rose R J, Nolan K E and Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula - implications for regenerability via somatic embryogenesis. J. Plant Physiol, 155: 788–791.

    Article  CAS  Google Scholar 

  • Samac D A (1995) Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult, 43: 271–277.

    Google Scholar 

  • Saunders J and Bingham E T (1972) Production of alfalfa plants from callus tissue. Crop Sci., 12: 804–808.

    Article  Google Scholar 

  • Saunders J W and Bingham E T (1975) Growth regulator effects on bud initiation in callus cultures of Medicago sativa. Amer. J. Bot., 62: 850–855.

    Article  Google Scholar 

  • Scarpa G M, Pupilli F, Damiani F and Arcioni S (1993) Plant regeneration from callus and protoplasts in MedicagopolymorphaPlant Cell Tiss. Org. Cult., 35: 49–57.

    Article  CAS  Google Scholar 

  • Schroeder H E, Khan M R I, Knibb W R, Spencer D and Higgins T J V (1991) Expression of a chicken ovalbumin gene in three lucerne cultivars. Aust. J. Plant Physiol, 18: 495–505.

    Article  CAS  Google Scholar 

  • Shabnam S, Zafar Y and Malik K A (1996) Transformation of alfalfa (Medicago sativa L.) plants with GUS marker containing intron. Pakistan J. Bot., 28: 167–172.

    CAS  Google Scholar 

  • Shahin E A, Spielmann A, Sukhapinda K, Simpson R B and Yashar M (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci., 26: 1235–1239.

    Article  CAS  Google Scholar 

  • Spano L, Mariotti D, Pezzotti M, Damiani F and Arcioni F (1987) Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet., 73: 523–530.

    Article  CAS  Google Scholar 

  • Stotz H U and Long S R (1999) Expression of the pea (Pisum sativum L.) alpha-tubulin gene Tub Al is correlated with cell division activity. Plant Mol Biol, 41: 601–614.

    Article  PubMed  CAS  Google Scholar 

  • Sukhapinda K, Spivey R and Shahin E A (1987) Ri-plasmid as a helper for introducing vector DNA into alfalfa plants. Plant Mol Biol, 8: 209–216.

    Article  CAS  Google Scholar 

  • Teoule E (1983) Hybridization somatique entre Medicago sativa L. et Medicago falcata L. C. R. Acad. Sci. Paris Serie 111,291: 13–16.

    Google Scholar 

  • Thomas J C, Wasmann C C, Echt C, Dunn R L, Bohnert H J and McCoy T J (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep., 14: 31–36.

    Article  CAS  Google Scholar 

  • Thomas M R, Johnson L B and White F F (1990) Selection of interspecific somatic hybrids of Medicago by using Agrobacterium — transformed tissues. Plant Sci., 69: 189–198.

    Article  Google Scholar 

  • Thomas M R, Rose R J and Nolan K E (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep., 11: 113–117.

    Article  CAS  Google Scholar 

  • Tian D and Rose R J (1999) Asymmetric somatic hybridisation between the annual legumes Medicago truncatula and Medicago scutellataPlant Cell Rep., 18: 989–996.

    Article  CAS  Google Scholar 

  • Trieu A T and Harrison M J (1996) Rapid transformation of Medicago truncatulaPlant Cell Rep., 16: 6–11.

    Article  CAS  Google Scholar 

  • Trieu A T, Burleigh S H, Kardailsky I V, Maldonado-Mendoza I E, Versaw W K, Blaylock L A, Shin H, Chiou T-J, Kateg H, Katagi H, Dewbre G R, Weigel D and Harrison M J (2000) Transformation of flowering plants with AgrobacteriumPlant I, 22: 531–541.

    Article  CAS  Google Scholar 

  • Trinh T H, Ratet P, Kondorosi E, Durand P, Kamate K, Bauer P and Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep., 17: 345–355.

    Article  CAS  Google Scholar 

  • Walker K A and Sato S J (1981) Morphogenesis in callus tissue of Medicago sativa: the role of ammonium ion in somatic embryogenesis. Plant Cell Tiss. Org. Cult., 1: 109–121.

    Article  CAS  Google Scholar 

  • Wan Y, Sorensen E L and Liang G H (1988) Genetic control of in vitro regeneration in alfalfa (Medicago sativa L.). Euphytica, 39: 3–9.

    Article  Google Scholar 

  • Wang J H, Rose R J and Donaldson B I (1996) Agrobacterium-mediated transformation and expression of foreign genes in Medicago truncatula. Aust. J. Plant Physiol, 23: 265–270.

    Article  Google Scholar 

  • Xu Z Q and Jia J F (1997) Regeneration of intergeneric somatic hybrids by protoplast fusion between Onobrychis viciaefolia and Medicago sativaScience in China, Series C Life Sciences, 40: 363–370.

    Article  CAS  Google Scholar 

  • Zafar Y, Nenz E, Damiani F, Pupilli F and Arcioni S (1995) Plant regeneration from expiant and protoplast derived calluses of Medicago littoralisPlant Cell Tiss. Org. Cult., 41: 41–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rose, R.J., Nolan, K.E., Niu, C. (2003). Genetic Transformation of Medicago Species. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics