Skip to main content

Regeneration and Genetic Transformation in Peanut: Current Status and Future Prospects

  • Chapter

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

Abstract

Peanut, Arachis hypogaea L. has long been the focus of conventional plant breeding efforts because of its importance as a source of high quality oil and protein. Recent techniques in genetic engineering coupled with developments in regeneration technology can be used for introduction of agronomically useful traits into established cultivars, which will supplement the conventional breeding programmes. Rapid strides have been made in the last two decades to develop a regeneration system for peanut. Highly reproducible regeneration systems through proliferation of axillary buds around a cultured meristem, de novo shoot organogenesis and somatic embryogenesis are available today as target expiants for experiments on transformation. Success has been achieved in the development of transgenic plants using both Agrobacterium-mediated and direct DNA transfer using particle gun bombardment. Several useful genes have already been transferred to peanut using gene transfer techniques. Peanut production is severely limited by a number of diseases and pests and one of the most challenging needs of the day is to improve resistance to Aspergillus species which produce anatoxins — which are potent carcinogenic metabolites. In addition, introduction of value added traits such as altered protein/oil composition today lies within the realms of biotechnology. Developing peanut plants with genes for abiotic stress or edible vaccines is not far away. The candidate genes which are currently available for transfer to peanut with possible implications in groundnut breeding programme is discussed. As developments in plant biotechnology unfolds, high frequency, disease resistant, drought tolerant and good tasting peanut, which are safe to eat, will continue to be the goals of peanut biotechnologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atreya C D, Rao J P and Subrahmanyam N C (1984) In vitro regeneration of peanut (Arachis hypogaea L.) plantlets from embryo axes and cotyledon segments. Plant Sci. Lett., 34: 379–383.

    Article  Google Scholar 

  • Baker C M, Durham R E, Burns J A, Parrott W A and Wetzstein H Y (1995) High frequency somatic embryo-genesis in peanut (Arachis hypogaea L.) using mature dry seed. Plant Cell Rep., 15: 38–42.

    Article  CAS  Google Scholar 

  • Baker C M and Wetztein H Y (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut, Arachis hypogaea. Plant Cell Rep., 11: 71–75.

    CAS  Google Scholar 

  • Baker C M and Wetztein H Y (1994) Influence of auxin type and concentration on peanut somatic embryogenesis. Plant Cell Tiss. Org. Cult., 36: 361–368.

    Article  CAS  Google Scholar 

  • Bhatia C R, Murty G S S and Mathews V H (1985) Regeneration from “de-embryonated” peanut cotyledons cultured without nutrients and agar. Zeitschrift für Pflanzenzuchtung, 94: 149–155.

    Google Scholar 

  • Brar G S, Cohen B A, Vick C L and Johnson G W (1994) Recovery of transgenic peanut (Arachis hypogaea) plants from elite cultivars using ACCELL technology. Plant J., 5: 745–753.

    Article  Google Scholar 

  • Bunting G A H, Wynne J C and Gibbons R W (1985) Groundnut (Arachis hypogaea L.) In: Grain Legume Crops (Eds Summerfield R J and Roberts E H), Collins Professional and Technical Books, London, 747–800.

    Google Scholar 

  • Burks A W, Williams L W, Helm R M, Connaughton C, Cockrell G and O’Brien T (1991) Identification of a major peanut allergen, Ara hl in patients with atopic dermatitis and positive peanut challenge. J. Allergy Clin Immunol, 90: 962–969.

    Article  Google Scholar 

  • Carley D H and Fletcher S M (1995) An overview of world peanut markets. In: Advances in Peanut Science (Eds. Pattee H E and Stalker H T), Peanut Res. and Educ. Soc. Inc., Stillwater, UK, 554–557.

    Google Scholar 

  • Cheng M, Hsi D C H and Phillips G C (1992) In vitro regeneration of Valencia type peanut (Arachis hypogaea L.) from cultured petioles, epicotyl sections and other seedling expiants. Peanut Sci., 19: 82–87.

    Article  Google Scholar 

  • Cheng M, Hsi D C H and Phillips G C (1994) Recovery of primary transformants of Valencia type peanut using Agrobacterium tumefaciens. Peanut Sci., 22: 82–88.

    Google Scholar 

  • Cheng M, Jarret R L, Li Z, Xing A and Demski J W (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep., 15: 653–657.

    Article  CAS  Google Scholar 

  • Cheng M, Jarret R L, Li Z and Demski J W (1997) Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium mediated transformation. Plant Cell Rep., 16: 541–544.

    Google Scholar 

  • Chengalrayan K, Mhaske V R and Hazra S (1998) Genotype control of peanut somatic embryogenesis. Plant Cell Rep., 17: 522–525.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Sathaye S S and Hazra S (1994) Somatic embryogenesis from mature embryo derived leaflets of peanut. Plant Cell Rep., 13: 578–581.

    Article  CAS  Google Scholar 

  • Chrispeels M J and Raikhel N V (1991) Lectins, lectin genes and their role in plant defense. Plant Cell, 3: 1–9.

    PubMed  CAS  Google Scholar 

  • Clementale T E, Robertson D, Isleib T G, Beute M K and Weissinger A K (1992) Evaluation of peanut (Arachis hypogaea L.) leaflets from mature zygotic embryos as recipient tissue for biolistic gene transfer. Transgenic Res, 1:275–284.

    Article  Google Scholar 

  • Daimon H and Mii M (1991) Multiple shoot formation and plant regeneration from cotyledonary node in peanut (Arachis hypogaea L.). Japan J. Breed., 41: 461–466.

    Google Scholar 

  • Dong J D, Bi Y P, Xia L S, Sun S M, Song Z H, Guo B T, Jiang X C and Shao Q Q (1990) Teratoma induction and nopaline synthase gene transfer in peanut. Acta. Genet. Sin., 17: 13–16.

    CAS  Google Scholar 

  • Dunbar K B and Pittman R N (1992) Adventitious shoot formation from mature leaf explantsof Arachis species. Crop Sci., 32: 1353–1356.

    Article  Google Scholar 

  • Durham R E and Parrot W A (1992) Repetitive somatic embryogenesis from peanut culture in liquid medium. Plant Cell Rep., 11: 122–125.

    Article  Google Scholar 

  • Eapen S and George L (1993a) Plant regeneration from leaf discs of peanut and pigeonpea: influence of benzy- ladenine, indole acetic acid and indole acetic acid aminoacid conjugates. Plant Cell Tiss. Org. Cult., 35: 223–227.

    Article  CAS  Google Scholar 

  • Eapen S and George L (1993b) Somatic embryogenesis in peanut: Influence of growth regulators and sugars. Plant Cell Tiss. Org. Cult, 35: 151–156.

    Article  CAS  Google Scholar 

  • Eapen S, George L and Rao P S (1993) Plant regeneration through somatic embryogenesis in peanut (Arachis hypogaea L.). Biol. Plant., 35: 499–504.

    Article  Google Scholar 

  • Eapen S and George L (1994) Agrobacterium mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep., 13:582–586.

    Article  CAS  Google Scholar 

  • Eapen S, Kale D M and George L (1998) Embryonal shoot tip multiplication in peanut. Clonal fidelity and variation in regenerated plants. Tropical Agr. Res. Extension, 1: 23–27.

    Google Scholar 

  • Egnin M, Mora A and Prakash C S (1998) Factors enhancing Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.) In Vitro Cell. Dev. Biol. Plant., 34: 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Franklin C I, Shorrosh K M, Trieu A N, Cassidy B G and Nelson R S (1993) Stable transformation of peanut callus via Agrobacterium mediated DNA transfer. Transgenic Res., 2: 321–324.

    Article  CAS  Google Scholar 

  • Freitas Valeria G De, Lacorte C, Sachetto M A, Krul William R, Olivera D F De, Neves I J and Mansur E (1997) Identification of competent cells for Agrobacterium transformation and in vitro regeneration in peanut leaf and cotyledon expiants. Rev. Bras, de Fisol. Veget., 9: 157–167.

    Google Scholar 

  • George L and Eapen S (1993) Influence of genotype and expiant source on somatic embryogenesis in peanut. Oleagineaux, 48: 361–364.

    Google Scholar 

  • Gill R and Ozias-Akins P (1999) Thidiazuron-induced highly morphogenic callus and high frequency regeneration of fertile peanut (Arachis hypogaea) plants. In Vitro Cell Dev. Biol. Plant., 35: 445–450.

    Article  Google Scholar 

  • Gill R and Saxena P K (1992) Direct somatic embryogenesis and regeneration of plants from seedling expiant of peanut (Arachis hypogaea) promotive role of thidiazuron. Can J. Bot., 70: 1186–1192.

    Article  CAS  Google Scholar 

  • Gill R, Yang H and Ozias-Akins P (1998) Plant regeneration from transgenic peanut lines (Arachis hypogaea L.) transformed with a tomato anionic peroxide gene. In Congress on in vitro Biol., Israel, 52.

    Google Scholar 

  • Guy A L, Heins J L and Pancholy S K (1978) Induction of biochemical parameters of callus growth from three peanut cultivars. Peanut Sci., 5: 78–82.

    Article  CAS  Google Scholar 

  • Hazra S, Sathaye S S and Mascarenhas A F (1989) Direct somatic embryogenesis in peanut (Arachis hypogaea). Bio/Technology, 7: 749–751.

    Article  Google Scholar 

  • Hisajima S, Paek K Y, Namwongprom K, Subhadrabandhu S and Ishizuka K (1989) Mass propagation of peanut (Arachis hypogaea L.) plant through cultured seeds in vitro. Japan J. Trop. Agr, 33: 237–242.

    Google Scholar 

  • Holbrook C C, Hunter J E, Knauft D A, Wilson D M and Matheron M E (1994) Fatty acid composition as a possible mechanism for resistance to preharvest anatoxin contamination of peanut. In: Proc. Am. Peanut Res. Ed. Soc, 26: 224–226.

    Google Scholar 

  • Illingsworth J E (1968) Peanut plants from single de-embryonated cotyledons. Hortscience, 3: 238–276.

    Google Scholar 

  • Illingsworth J E (1974) Peanut plants from single de-embryonated cotyledons or cotyledonary fragments. Hortscience, 9: 462.

    Google Scholar 

  • Isleib T G, Wynne J C and Nigam S N (1994) Groundnut Breeding. In: The Groundnut crop — a scientific basis for improvement (Ed Smartt J), Chapman and Hall, London.

    Google Scholar 

  • Jarret R I and Demski J W (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing nucleocapsid gene. Transgenic Res., 6: 297–305.

    Article  Google Scholar 

  • Kanyand M, Dessai A P and Prakash C S (1994) Thidiazuron promotes high frequency regeneration of peanut (Arachis hypogaea) plants in vitro. Plant Cell Rep., 14: 1–5.

    CAS  Google Scholar 

  • Kartha K K, Pahl K, Leung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea and bean. Can. J. Bot., 59: 1671–1679.

    Article  CAS  Google Scholar 

  • Kellmann J W, Kleinow T, Engelhardt K, Philipp C, Wegner P, Schell J and Schreier P H (1996) Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Peanut Mol Biol, 30: 351–358.

    Article  CAS  Google Scholar 

  • Khandelwal A, Geetha N, Venkatachalam P, Shaila M S and Lakshmi Sita G (1999) Generation of transgenic plants as a source of edible vaccine for Rinderpest, an animal disease. In: NCL Golden Jubilee National Seminar on Emerging Frontiers in Plant Biotechnology, NCL, Pune, 39–40.

    Google Scholar 

  • Kim T, Chowdhury M K U and Wetztein H Y (1999) A quantitative and histological comparison of GUS expression with different promoter constructs used in microprojectile bombardment of peanut leaf tissue. In Vitro Cell Dev. Biol Plant., 35: 51–56.

    Article  CAS  Google Scholar 

  • Klein T M, Wolf E D, Wu R and Sanford J C (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327: 70–73.

    Article  CAS  Google Scholar 

  • Koiwa H, Bressan R A and Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci., 2: 379–384.

    Article  Google Scholar 

  • Lacorte C, Aragu F J L, Almeida E R, Mansur E and Rech E L (1997) Transient expression of GUS and 2S albumin gene from Brazil nut in peanut (Arachis hypogaea L.) seed expiants using particle bombardment. Plant Cell Rep., 16: 628.

    Article  Google Scholar 

  • Lacorte C, Mansur E, Timmerman B and Corderio A R (1991) Gene transfer into peanut (Arachis hypogaea) by Agrobacterium tumefaciens. Plant Cell Rep., 10: 354–357.

    CAS  Google Scholar 

  • Lewis J, Egnin M, Walker M, Jaynes J and Prakash C S (1998) Introduction and expression of an improved nutritional protein gene in peanut. In In Vitro Biol Congress.

    Google Scholar 

  • Livingstone D M and Birch R G (1995) Plant regeneration and microprojectile mediated gene transfer in embryonic leaflets of peanut (Arachis hypogaea L.). Australian J. Plant Physiol, 22: 585–591.

    Article  CAS  Google Scholar 

  • Livingstone D M and Birch R G (1999) Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenie callus produced from mature seeds. Mol Breed., 5: 43–51.

    Article  Google Scholar 

  • Lurquin P F (1987) Foreign gene expression in plant cells. Progress in Nucleic acid Research and Molecular Biology, 34: 143–188.

    Article  PubMed  CAS  Google Scholar 

  • McKently A, Moore G A and Gardner F P (1990) In vitro plant regeneration of peanut from seed expiants. Crop Sci., 30: 192–196.

    Article  Google Scholar 

  • McKently A H (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell Dev. Biol. Plant, 27: 197–200.

    Google Scholar 

  • McKently A H, Moore G A and Gardner F P (1991) Regeneration of peanut and perennial peanut from cultured leaf tissue. Crop Sci., 31: 833–837.

    Article  Google Scholar 

  • McKently A H (1995) Effect of genotype on somatic embryogenesis from axes of mature peanut embryos. Plant Cell Tiss. Org. Cult., 42: 251–254.

    Article  Google Scholar 

  • McKently A H, Moore G A, Doostdar H and Niedz R P (1995) Agrobacterium mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep., 14: 699–703.

    Article  CAS  Google Scholar 

  • Mansur E, Lacorte C and De Freitas V G (1993) Regulation of transformation efficiency of peanut (Arachis hypogaea L.) expiants by Agrobacterium tumefaciens. Plant Sci., 99: 89–91.

    Google Scholar 

  • Mhatre M, Bapat V A and Rao P S (1985) Micropropagation and protoplast culture in peanut (Arachis hypogaea L.). Curr. Sci., 54: 1052–1056.

    Google Scholar 

  • Middleton K J, Pande S, Sharma S B and Smith D H (1994) Diseases. In: The Groundnut Crop (Ed Smartt J), Chapman and Hall, London, 336–394.

    Chapter  Google Scholar 

  • Mroginski L A, Kartha K K and Shyluk J P (1981) Regeneration of peanut (Arachis hypogaea) plantlets by in vitro culture of immature leaves. Can. J. Bot., 59: 826–830.

    Article  CAS  Google Scholar 

  • Murch S J and Saxena P K (1997) Modulation of mineral and fatty acid profiles during thidiazuron mediated somatic embryogenesis in peanut (Arachis hypogaea L.). J. Plant Physiol, 151: 358–361.

    Article  CAS  Google Scholar 

  • Murthy B N S, Murch S H and Saxena P K (1995) Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea) endogenous growth regulation levels and significance of cotyledons. Physiol. Plant., 94: 268–276.

    Article  CAS  Google Scholar 

  • Narasimhulu S B and Reddy G M (1984) In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea). Theor. Appl. Genet., 61: 87–91.

    Google Scholar 

  • Narasimhulu S B and Reddy G M (1985) Callus induction and morphogenesis in Arachis hypogaea L. In: Proc. of an International Workshop on Cytogenetics of Arachis (Eds Morr J P and Feakin S D), ICRISAT, Patancheru, A.R, India, 159–163.

    Google Scholar 

  • Ozias-Akins P (1989) Plant regeneration from immature embryos of peanut. Plant Cell Rep., 8: 217–218.

    Article  Google Scholar 

  • Ozias-Akins P, Anderson W F and Holbrook CC (1992) Somatic embryogenesis in Arachis hypogaea L. genotype comparison. Plant Sci., 83: 103–111.

    Article  Google Scholar 

  • Ozias-Akins P, Schnall J A, Anderson W F, Sinsit C, demente T E, Adang M J and Weissinger A K (1993) Regeneration of transgenic peanut plants from stably transformed embryonic callus. Plant Sci., 93: 185–194.

    Article  CAS  Google Scholar 

  • Pestana M C, Lacorte C, De Freitas V G, De Oliveria D E and Mansur E (1999) In vitro regeneration of peanut (Arachis hypogaea L.) through organogenesis. Effect of culture temperature and silver nitrate. In Vitro Cell Dev. Biol. Plant, 35: 214–216.

    Article  Google Scholar 

  • Ping Y, Yong X Z, Yi Z Y, Lining Y and Kunrong C (1996) Plant regeneration and Agrobacterium mediated gene transformation in leaflets of groundnut (Arachis hypogaea L.). Oil Crops of China, 18: 52–56.

    Google Scholar 

  • Pittman R N, Banks D J, Kirby J S, Mitchell E D and Richardson (1983) In vitro culture of immature peanut (Arachis spp.) leaves: morphogenesis and plantlet regeneration. Peanut Sci., 10: 21–25.

    Article  Google Scholar 

  • Ponsamuel J, Huhman D V, Cassidy R A and Post-Reittenmiller D (1998) In vitro regeneration via caulogenesis and brassin induced shoot conversion of dormant seeds from plumular expiants of peanut (Arachis hypogaea L.). Plant Cell Rep., 17: 373–378.

    Article  CAS  Google Scholar 

  • Ramdev Reddy L and Reddy G M (1993) Factors affecting direct somatic embryogenesis and plant regeneration in groundnut, Arachis hypogaea L. Indian J. Exp. Biol., 31: 57–60.

    Google Scholar 

  • Rani A S and Reddy G M (1996) Multiple shoot regeneration from de-embryonated cotyledons of cultivated and wild species of Arachis. J. Genet. Plant Breed., 50: 351–355.

    Google Scholar 

  • Rohini V K and Shankara Rao K (2000) Transformation of peanut (Arachis hypogaea) a non tissue culture approach for generating transgenic plants. Plant Sci., 150: 41–49.

    Article  CAS  Google Scholar 

  • Rugman E E and Cocking E C (1985) The development of somatic hybridization technique for groundnut improvement. In: Proc. of an International Workshop on Cytogenetics of Arachis (Eds Moss J P and Feakin S D), ICRISAT Patencheru, A.P., India, 167–174.

    Google Scholar 

  • Russo S L and Varnell R J (1978) In vitro responses of peanut shoot tips. Proc. Soil and Crop. Sci. Soc, 37: 34–36.

    Google Scholar 

  • Sanford J C, Klein T M, Wolf E D and Allen N (1987) Delivery of substances into cells and tissue using a particle gun bombardment process. Particle Gun Technol, 5: 27–37.

    Article  CAS  Google Scholar 

  • Sastri D C, Nalini M S and Moss J P (1982) Tissue culture and prospects for improvement of Arachis hypogaea and other oil seed crops. In: Tissue Culture of Economically Important Plants (Ed Rao A N), Proc. Costed Symp., Singapore, 42–57.

    Google Scholar 

  • Savage G P and Keenan J I (1994) The composition and nutritive value of groundnut kernels. In: The Groundnut Crop — Scientific Basis for Improvement (Ed Smartt J), Chapman and Hall, London, 173–213.

    Chapter  Google Scholar 

  • Saxena P K, Malik K A and Gill R (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta, 187: 421–424.

    Article  CAS  Google Scholar 

  • Schnall JA and Weissinger A K (1993) Culturing peanut (Avachis hypogaea L.) zygotic embryos for transformation via microprojectile bombardment. Plant Cell Rep., 12: 316–319.

    Article  Google Scholar 

  • Scitz M H, Stalker H T and Green G C (1987) Genetic variation for regenerative response in immature leaflet cultures of the cultured peanut Avachis hypogaea. Plant Bveed., 98: 104–110.

    Google Scholar 

  • Sellars R M, Southward G M and Phillips G C (1990) Adventitious somatic embryogenesis and cultured immature zygotic embryos of peanut and soybean. Cvop Sci., 30: 408–414.

    CAS  Google Scholar 

  • Shade R E, Shroeder H E, Pueyo J J, Table L M, Murdock L L, Higgins T J V and Chrispeels M J (1994) Transgenic pea seeds expressing α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biol Technology, 12: 793–796.

    Article  CAS  Google Scholar 

  • Sharma K K and Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Avachis hypogaea L.) through Agvobactevium tumefaciens mediated genetic transformation. Plant Sci., 159: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Sharma K K, Anjaiah V and Moss J P (1993) Production of transgenic plants of groundnut by Agvobactevium- mediated genetic transformation. Gvoundnut Newslettev, 23–25.

    Google Scholar 

  • Singsit C, Arlang M, Lynch R F, Anderson W F, Wang A, Cardineau A and Ozias-Akins P (1997) Expression of a Bacillus thuvingiensis cvylAc gene in transgenic peanut. Tvansgenic Res., 6: 169–176.

    Article  CAS  Google Scholar 

  • Stalker H T (1997) Peanut (Avachis hypogaea L.). Field Cvop Res., 53: 205–207.

    Article  Google Scholar 

  • Varsha R L, Dubey R K, Srivastava A K and Kumar S (1997) Microprojectile plant transformation: A bibliographic search. Euphytica, 95: 269–294.

    Article  Google Scholar 

  • Venkatachalam P and Jayabalan N (1997) Effect of auxins and cytokinins on efficient plant regeneration and multiple shoot formation from cotyledons and cotyledonary node expiants of groundnut (Avachis hypogaea L.) by in vitvo culture technology. Applied Biochem. and Biotech., 67: 237–247.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N and Jayabalan N (1998a) Influence of growth regulators on plant regeneration from epicotyl and hypocotyl cultures of two groundnut (Avachis hypogaea L.) cultivars. J. Plant Biol., 41: 1–8.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Jayabalan N, Saravana Babu and Lakshmi Sita G (1998b) Agvobactevium mediated genetic transformation of groundnut (Avachis hypogaea L.). An assessment of factors affecting regeneration of transgenic plants. J. Plant Res., 111: 565–577.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila M S and Lakshmi Sita G (1999c) Induction of direct somatic embryogenesis and plant regeneration from mature cotyledon expiants of Avachis hypogaea L. Cuvv. Sci., 77: 269–273.

    Google Scholar 

  • Venkatachalam P, Geetha N, Sankara Rao K and Jayabalan N (1999a) Rapid and high frequency in vitro plant regeneration from leaflet and petiole expiants of groundnut (Avachis hypogaea) L. Applied Biochem. and Biotech., 80: 193–203.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Kavikishor P B, Geetha N, Thangavelu M and Jayabalan M (1999b) A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Avachis hypogaea L.).In Vitvo Cell Dev. Biol. Plant, 35: 409–42.

    Article  Google Scholar 

  • Venkatachalam P and Jayabalan N (1996) Efficient callus induction and plant regeneration via somatic embryogenesis from immature leaf derived protoplasts of groundnut (Avachis hypogaea L.). Isvael J. Plant Sci., 44: 387–394.

    Article  Google Scholar 

  • Victor J M R, Murch S J, Krishnaraj S and Saxena P K (1999) Somatic embryogenesis and organogenesis in peanut: The role of thidiazuron and N6 benzylaminopurine in the induction of plant morphogenesis. Plant Gvowth Reg, 28:9–15.

    Article  CAS  Google Scholar 

  • Wang A, Fan H, Singsit C and Ozias-Akins P (1998) Transformation of peanut with a soybean VspB promoter — uidA chimeric gene. 1. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol. Plant., 102: 38–48.

    Article  CAS  Google Scholar 

  • Wightman J A and Ranga Rao G V (1994) Chapter 11. Groundnut pests. In: The Gvoundnut Cvop (Ed Smartt J), Chapman and Hall, London and Glasgow, 336–394.

    Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D and Ozias-Akins P (1998a) Transgenic peanut plants containing nucleocapsid protein gene of tomato spotted wilt virus and divergent levels of gene expression. Plant Cell Rep., 17: 693–699.

    Article  CAS  Google Scholar 

  • Yang H Y, Gill R and Ozias-Akins P (1998b) Transformation of peanut with a synthetic antifungal peptide gene. In: Congress on in vitvo Biology, Israel, 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eapen, S. (2003). Regeneration and Genetic Transformation in Peanut: Current Status and Future Prospects. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics