Skip to main content

Thermal Transformation of Soil Organic Matter by Natural Fires and Laboratory-Controlled Heatings

  • Chapter
Natural and Laboratory-Simulated Thermal Geochemical Processes

Abstract

The results of a multi-approach analysis on the effects that wildfires exert on soil organic matter (SOM) properties are presented. The methods used included wet chemical oxidation and thermal degradation by flash pyrolysis, as well as Fourier-transformed infrared (FT-IR) and solid-state 13C and 15N nuclear magnetic resonance (NMR) spectroscopies. Such destructive and non-destructive analytical techniques were used for the assessment of heat effects to a molecular level applied to representative Spanish forest ecosystems and for the study of the alteration of different organic materials in the course of progressive heating in laboratory simulation experiments. The materials studied included: whole soils and sapric peat, isolated soil humic fractions, lignocellulosic biomass and preparations of cellulose.

Among our findings, it can be emphasized: (i) the importance of the abiotic transformation of aliphatic precursors into aromatic macromolecules under present-day environmental conditions, (ii) a thermal neoformation of heterocyclic N-forms, (iii) changes in the solubility properties of the soluble and colloidal SOM fractions, (iv) a preferential loss of oxygen-containing functional groups and O-alkyl aliphatic structures, and (v) changes in the SOM macromolecular structure, probably related to the accumulation of a resistant alkyl moiety.

In general, our results from laboratory experiments agreed with those obtained from soils affected by wildfires in different Continental Mediterranean forest formations. The results are discussed in terms of the natural stabilization mechanisms of the most refractory SOM forms, which is of particular interest in the study of the global C and N biogeochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almendros, G, Polo, A., Ibanez, J. and Lobo, M. C. (1984a) Contribution al estudio de la influencia de los incendios forestales en las características de la materia orgânica del suelo. I: Transformaciones del humus en un bosque de Pinus pinea del Centro de Espana. Rev. d’Ecol. Biol. Sol. 21, 7–20.

    CAS  Google Scholar 

  • Almendros, G., Polo, A., Lobo, M. C. and Ibáñez, J. (1984b) Contribuciön al estudio de la influencia de los incendios forestales en las caracteristicas de la materia orgánica del suelo. II: Transformaciones del humus por ignition en condiciones controladas de laboratorio. Rev. d’Ecol. Biol. Sol. 21, 145–160.

    CAS  Google Scholar 

  • Almendros G, Martin F. and González-Vila, F. J. (1988) Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma 42, 115–127.

    Article  CAS  Google Scholar 

  • Almendros, G, Sanz, J. and Sobrados, I. (1989) Characterization of synthetic carbohydrate-derived humic-like polymers. Sci. Total Environ. 81/82, 91–98.

    Article  Google Scholar 

  • Almendros, G, Gonzalez-Vila, F. J. and Martin, F. (1990) Fire-induced transformation of soil organic matter from an oak forest. An experimental approach to the effects of fire on humic substances. Soil Sci. 149, 158–168.

    Article  CAS  Google Scholar 

  • Almendros, G, Friind, R., González-Vila, F J., Haider, K. M., Knicker, H. and Lüdemann H.-D. (1991) Analysis of 13C and 15N CPMAS NMR-spectra of soil organic matter and composts. FEBS Lett. 282, 119–121.

    Article  CAS  Google Scholar 

  • Almendros, G, González-Vila, F. J., Martin, F., Fründ, R. and Lüdemann, H.-D. (1992) Solid state NMR studies of fire-induced changes in the structure of humic substances. Sci. Total Environ. 117/118, 63–74.

    Article  Google Scholar 

  • Almendros, G, Martin, F., González-Vila, F J. and Del Rio, J. C. (1993) The effects of various chemical treatments on the pyrolytic pattern of peat humic acids. J. Analytic. Appl. Pyrol. 25, 137–147.

    Article  CAS  Google Scholar 

  • Almendros, G, Dorado, J., González-Vila, F. J. and Martin, F (1997) Pyrolysis of carbohydrate-derived macromolecules: its potential in monitoring the carbohydrate signature of geopolymers. J. Analyt. Appl Pyrol. 40–41, 599–610.

    Article  Google Scholar 

  • Almendros, G, González-Vila, F. J., Martin, F, Sanz, J. and Álvarez-Ramis, C. (1998) Appraisal of pyrolytic techniques on different forms of organic matter from a cretaceous basement in central Spain. Organic Geochem. 28, 613–623.

    Article  CAS  Google Scholar 

  • Almendros, G, González-Vila, F. J., Dorado, J., Sanz J., Alvarez-Ramis, C., Martin, F. and Stuchlik L. (1999) Molecular characterization of fossil organic matter in Glyptostrobus europaeus remains from the Orawa basin (Poland). Comparison of pyrolytic techniques. Fuel 78, 745–752.

    Article  CAS  Google Scholar 

  • Almendros, G, Knicker, H. and Gonzalez-Vila, F. J. (2002) Rearrangement of carbon and nitrogen forms in peat after peat laboratory heating as determined by solid state 13C-and 15N-NMR spectroscopies. Organic Geochem. (in press).

    Google Scholar 

  • Athias-Binche, F. and Saulnier, L. (1986) Modalités de la cicatrisation des écosistémes méditerranéens aprés incendie, cas de certains arthropodes du sol. 1. Introduction, stations d’etude. Vie Milieu 36, 117–124.

    Google Scholar 

  • Balesdent, J., and Mariotti, A. (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: T. W. Boutton and S. I. Yamasaki (eds), Mass Spectrometry of Soils. Dekker, New York.

    Google Scholar 

  • Batjes, N. H. (1996) Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163.

    Article  CAS  Google Scholar 

  • Benzing-Purdie, L. M. and Ripmeester, J. A. (1983) Melanoidins and soil organic matter: evidence of strong similarities revealed by 13C CP-MAS NMR. Soil Sci. Soc. Am. J. 47, 56–61.

    Article  CAS  Google Scholar 

  • Benzing-Purdie, L. M., Ripmeester, J. A. and Preston, C. M. (1983) Elucidation of the nitrogen forms in melanoidins and humic acids by nitrogen-15 cross polarization-magic angle spinning nuclear magnetic resonance. J. Agric. Food Chemist. 31, 913–915.

    Article  CAS  Google Scholar 

  • Benzing-Purdie, L. M., Cheshire, M. V, Williams, B. L., Sparling, G P., Ratcliffe, C. I. and Ripmeester, J. A. (1986) Fate of [15N] glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy. J. Agric. Food Chemist. 34, 170–176.

    Article  CAS  Google Scholar 

  • Bird, M. L, Moyo, C., Veenendal, E. M., Lloyd, J and Frost, P. (1999) Stability of elemental carbon in savanna soil. Global Bigeochem. Cyc. 13, 923–932.

    Article  CAS  Google Scholar 

  • Boon, J. J. and de Leeuw, J. W. (1987) Amino acid sequence information in proteins and complex proteinaceous material revealed by pyrolysis-capillary gas chromatography-low and high resolution mass spectrometry. J. Analyt. Appl. Pyrol. 11, 313–327.

    Article  CAS  Google Scholar 

  • Caldararo, N. (2002) Human ecological intervention and the role of forest fires in human ecology. Sci. Total Environ. 292, 141–165.

    Article  CAS  Google Scholar 

  • Cheshire, M. V., Williams, B. L., Benzing-Purdie, L. M., Ratcliffe, C. I. and Ripmeester, J. A. (1990) Use of NMR spectroscopy to study transformations of nitrogenous substances during incubation of peat. Soil Use and Manag. 6, 90–92.

    Article  Google Scholar 

  • Chouliaras, N., Vedy, J. C. and Portal, J. M. (1975) Fractionnement et caractérisation de la matière organique dan- les rendsines. Bull de l’Inst. Nat. Polytech. Nancy 17, 65–74.

    CAS  Google Scholar 

  • Clinton, P. W., Newman, R. H. and Allen, R. B. (1996) Immobilization of 15N in forest litter studied by 15N CPMAS NMR spectroscopy. Eur. J. Soil Sci. 46, 551–556.

    Article  Google Scholar 

  • De Bano, L. F., Mann, L. D., and Hamilton D. A. (1970) Translocation of hydrophobic substances into soil by burning organic litter. Soil Sci. Soc. Am. Proc. 34, 130–133.

    Article  Google Scholar 

  • De Bano, L. F., Savage, S. M. and Hamilton, D. A. (1976) The transfer of heat and hydrophobic substances during burning. Soil Sci. Soc. Am. J. 40, 779–782.

    Article  Google Scholar 

  • De Bano, L. F., Dunn P. H., and Conrad, D. A. (1977a) Fire’s effect on physical and chemical properties of chaparral soils. Proc. Symp. Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. USDA Forest Service, CA, pp. 65–74.

    Google Scholar 

  • De Bano, L. F., Mann, L. D. and Hamilton, D. A. (1977b). Fire’s effects on physical and aggregate stability in hydrophobic soil. In: Forest (ed.), Proceedings Symposium on the Environmental Consequences of Fire and Fuel Management Mediterranean Ecosystems. USDA Forest Service, pp. 65–74.

    Google Scholar 

  • Del Rio, J. C., García-Mollá, J., González-Vila, F. J and Martin, F. (1993) Flash pyrolysis-gas chromatography of the kerogen and asphaltene fractions isolated from a sequence of oil shales. J. Chromatogr. 657, 119–122.

    Article  Google Scholar 

  • Dennis L. W., Maciel G. E., Hatcher P. G. and Simoneit B. R. T. (1982) 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations. Geochim. Cosmochim. Acta 46, 901–907.

    Article  CAS  Google Scholar 

  • Derenne, S., Largeau, C. and Taulelle, F. (1993) Occurrence of non-hydrolysable amides in the macro-molecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens. Geochim. Cosmochim. Acta 57, 851–857.

    Article  CAS  Google Scholar 

  • Derenne, S. and Largeau, C. (2001) A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci. 166, 833–847.

    Article  CAS  Google Scholar 

  • Dunn, R. and Conrad, C. E. (1977) Fire’s effect on physical and chemical properties of chaparral soils. In: Proceedings Symposium Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. USDA Forest Service, pp. 65–74.

    Google Scholar 

  • Durand, B. E. (1980) In: Kerogen (ed.), Insoluble Organic Matter from Sedimentary Rocks. Technip, Paris.

    Google Scholar 

  • Ellis, G. P. (1959) The Maillard reaction. Adv. Carbohyd. Chem. 14, 63–134.

    Article  CAS  Google Scholar 

  • Ekman, R. (1979). Modified resin acids in the reaction zone of Fomes annosum affected sapwood of Norway Spruce. Acta Acad. Aboensis, Ser. B. 39, 1–7.

    Google Scholar 

  • Feather, M. S. and Harris, J. F. (1973) Dehydration reactions of carbohydrates. Adv. Carbohyd. Chem. Biochem. 28, 161–224.

    Article  CAS  Google Scholar 

  • Fengel, D. and Wegener, G (1984) Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.

    Google Scholar 

  • Fernandez, I., Cabaneiro, A. and Carballas, T. (1997) Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11.

    Article  CAS  Google Scholar 

  • Friind, R. and Ludemann, H.-D. (1989) The quantitative analysis of solution and CPMAS-C-13 NMR spectra of humic material. Sci. Total Environ. 81/82, 157–168.

    Article  Google Scholar 

  • Gerasimowicz, W., Byler, D. and Susi, H., (1986) Resolution-enhanced FT-IR of soils constituents: humic acid. Appl. Spectroscopy 40, 504–507.

    Article  CAS  Google Scholar 

  • Giovannini, G, Luchessi, S., Cerevelli, S. (1983) Water-repellent substances and aggregate stability in hydrophobic soil. Soil Sci. 135, 110–113.

    Article  CAS  Google Scholar 

  • Giovannini, G and Lucchesi, S. (1984) Effect of fire on hydrophobic and cementing substances of soil aggregates. Soil Sci. 136, 231–236.

    Article  Google Scholar 

  • Giovannini, G, Lucchesi S., and Giachetti M. (1987) The natural evolution of a burned soil: a three-year investigation. Soil Sci. 143, 220–226

    Article  CAS  Google Scholar 

  • Giovannini, G, Luchessi, S. and Giachetti, M. (1988) Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 146, 255–261.

    Article  CAS  Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G and Zech, W. (1998) Black carbon in soils: the use of benzene-carboxylic acids as specific markers. Organic Geochem. 29, 811–819.

    Article  CAS  Google Scholar 

  • Golchin, A., Clarke, P., Baldock, J. A., Higashi, T., Skjemstad, J. O. and Oades, J. M. (1997a) The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil shown by 13C NMR spectroscopy. I. Whole soil and humic acid fraction. Geoderma 76, 155–174.

    Article  CAS  Google Scholar 

  • Golchin, A., Baldock, J. A., Clarke, P., Higashi, T. and Oades, J. M. (1997b) The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by13C NMR spectroscopy. II. Density fractions. Geoderma 76, 175–192.

    Article  CAS  Google Scholar 

  • Goldberg, E. D. (1985) Black Carbon in the Environment. Wiley, New York.

    Google Scholar 

  • González-Vila, F. J., Almendros, G, Tinoco, P. and Rodriguez, J. (2001a) Nitrogen speciation and pyrolytic patterns of 15N-labelled soil and compost fractions. J. Analyt. Appl. Pyrol. 58–59, 329–339

    Article  Google Scholar 

  • González-Vila, F. J., Ambles, A., Del Rio, J. C. and Grasset, L (2001b) Characterisation and differentiation of kerogens by pyrolytic and chemical degradation techniques. J. Analyt. Appl. Pyrol. 58/59, 315–328.

    Article  Google Scholar 

  • González-Vila, F. J., Tinoco, P., Almendros, G, Martin, F. (2001c) Py-GC-MS analysis of the formation and degradation stages of charred residues from lignocelulosic biomass. J. Agricul. Food Chem. 49, 1128–1131.

    Article  CAS  Google Scholar 

  • González-Vila, F. J., González, J. A., Polvillo, O., Almendros G and Knicker, H. (2002) Nature of refractory forms of organic carbon in soils affected by fires. Pyrolytic and spectroscopic approaches. In: Proceedings IV International Conference on Forest Fires Research. Coimbra, Portugal.

    Google Scholar 

  • Greenland, D. J. (1971) Interactions between humic and fulvic acids and clays. Soil Sci. 111, 34–41.

    Article  CAS  Google Scholar 

  • Grossi, V, Baas, M., Schogt, N., Breteler, W. C. M., de Leeuw, J. W. and Rontani, J. F. (1996) Formation of phytadienes in the water column: myth or reality? Organic Geochem. 24, 833–839.

    Article  CAS  Google Scholar 

  • Guckert, A., Roger, P. and Jacquin, F. (1968) Contribution a l’utilisation des techniques radiositopiques por 1’etude de la matière organique du sol. Bull. Ecole Nationale Superieur Agronomique 10, 69–100.

    Google Scholar 

  • Gustafsson, O. and Gschwend, Ph. M. (1998) The flux of black carbon to surface sediments on the New England continental shelf. Geochim. Cosmochim. Acta 62, 465–472.

    Article  CAS  Google Scholar 

  • Haslam, S. F. I., Chudek, J. A., Goldspink, C. R. and Hopkins, D. W. (1998) Organic matter accumulation following fires in a moorland soil chronosequence. Global Change Biol. 4, 305–313.

    Article  Google Scholar 

  • Hatcher, P. G, Schnitzer, M., Vasallo, A. M. and Wilson, M. A. (1989) The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies. Geochim. Cosmochim. Acta 53, 125–130

    Article  CAS  Google Scholar 

  • Haumaier, L. and Zech, W. (1995) Black carbon — possible source of highly aromatic components of soil humic acids. Organic Geochem. 23, 191–196.

    Article  CAS  Google Scholar 

  • Hayes M. H. B., MacCarthy P., Malcolm R. L. and Swift, R. S. (1989) Humic Substances. II. In the Search of Structure. John Wiley and Sons, New York

    Google Scholar 

  • Hedges, J. L. (1978) The formation and clay reactions of melanoidins. Geochim. Cosmochim. Acta 42, 69–76.

    Article  CAS  Google Scholar 

  • Hedge J. E. (1953) Chemistry of browning reactions in model systems. J. Agricul. Food Chem. 928–943.

    Google Scholar 

  • Ikan, R, Rubinsztain, Y, Nissenbaum, A. and Kaplan, I. R. (1996) Geochemical aspects of the Maillard reaction. In: R. Ikan (ed.). The Maillard Reaction. Consequences for the Chemical and Life Sciences. John Wiley and Sons, Chichester, pp. 1–26.

    Google Scholar 

  • Ishiwatari, M., Ishwatari, R., Sakashita, H., Tatsumi, T. and Tominaga, H (1990) The effects of preheating treatment on the pyrolysis of chloropyll a. Simulation of diagenetic processes in kerogen formation. Chem. Lett. 6, 875–878.

    Article  Google Scholar 

  • Ketterings, Q. M., Bigham, J. M. and Laperche, V. (2000) Changes in soil mineralogy and texture caused by the slash and burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117.

    Article  CAS  Google Scholar 

  • Knicker, H., Fründ, R. and Lüdemann, H.-D. (1993) The chemical nature of nitrogen in native soil organic matter. Naturwissenschaften 80, 219–221.

    Article  CAS  Google Scholar 

  • Knicker, H. and Lüdemann, H.-D. (1995) N-15 and C-13 CPMAS and solution HR NMR studies on the chemical modifications of N-15 enriched plant material during 600 days of microbial degradation. Organic Geochem. 23, 329–341.

    Article  CAS  Google Scholar 

  • Knicker, H., Hatcher, P. G. and Scaroni, A. W. (1995) Solid-state 15N NMR spectroscopy of coal. Energy and Fuel 9, 999–1002.

    Article  CAS  Google Scholar 

  • Knicker, H., Almendros, G, González-Vila F. J., Martin, F. and Lüdemann, H.-D. (1996) 13C-and 15N- NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060.

    Article  CAS  Google Scholar 

  • Knicker, H., Fründ, R. and Lüdemann, H.-D. (1997) Characterization of the nitrogen in plant composts and native humic material by natural abundance N-15 CPMAS and solution spectra. In: M. A. Nanny, R. A. Minear and J. Lenheer (eds), Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry. Oxford University Press, London, pp. 272–294.

    Google Scholar 

  • Knicker, H. and Hatcher, P. G (1997) Survival of protein in organic-rich sediments — possible protection by encapsulation in organic matter. Naturwissenschaften 84, 231–234.

    Article  CAS  Google Scholar 

  • Knicker, H. (2000) Biogenic nitrogen in soils as revealed by solid-state 13C and 15N NMR spectroscopy. J. Environ. Qual. 29, 715–723.

    Article  CAS  Google Scholar 

  • Knicker, H. and Skjemstad, J. O. (2000) Carbon and nitrogen functionality in protected organic matter of some Australian soils as revealed by solid-state 13C and 15N NMR. Aust. J. Soil Sci. 38, 113–127.

    Article  Google Scholar 

  • Knicker, H., Schmidt, M. W. I. and Kögel-Knabner, I. (2000) Immobilization of peptides in fine particle size separates of soils as revealed by NMR spectroscopy. Soil Biol. Biochem. 32, 241–252

    Article  CAS  Google Scholar 

  • Knicker, H., Hatcher, P. G and González-Vila, F. J. (2002) Formation of heteroaromatic nitrogen after prolonged humification of vascular plant remains as revealed by Nuclear Magnetic Resonance spectroscopy. J. Environ. Qual. 31, 444–449.

    Article  CAS  Google Scholar 

  • Kodama, H. and Schnitzer, M. (1970) Kinetics and mechanism of the thermal decomposition of fulvic acid. Soil Sci. 109, 265–271.

    Article  CAS  Google Scholar 

  • Kögel-Knabner I. (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80, 243–270.

    Article  Google Scholar 

  • Kuhlbusch, T. A. J. (1998) Black carbon and the carbon cycle. Science 280, 1903–1904.

    Article  CAS  Google Scholar 

  • Kuhlbusch, T. A. J., Andreae, M. O., Cachier, H., Goldammer, J. G, Lacaux, J.-P., Shea, R. and Crutzen, P. J. (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J. Geophys. Res. [Atmos.] 101, 23651–23665.

    Article  CAS  Google Scholar 

  • Levine, J. S., Cofer, W. R., Cahoon, D. R. and Winstead, E. L. (1995) Biomass burning: a driver for global change. Environ. Sci. Technol. 29, 120A-125A.

    Google Scholar 

  • Lowe, L. E. (1975) Fractionation of acid-soluble components of soil organic matter using polyvinyl pyrrolydone. Can. J. Soil Sci. 56, 119–126.

    Article  Google Scholar 

  • Maillard, M. L.-C. (1916) Synthèse des matières humiques par action des acides amines sur les sucres reducteurs. Annales de Chimie 5, 258–317.

    CAS  Google Scholar 

  • Martin, F., Saíz-Jiménez, C. and González-Vila, F. J. (1979) Pyrolysis-gas chromatography-mass spectrometry of lignins. Holzforschung 33, 210–212.

    Article  CAS  Google Scholar 

  • Martin, F., Saíz-Jiménez, C. and González-Vila, F. J. (1981) The persulfate oxidation of a soil humic acid. Soil Sci. 132, 200–203.

    Article  CAS  Google Scholar 

  • Martin, F. and González-Vila, F. J. (1983) Pyrolysis of a soil humic acid and of their hydrolyzed and methylated products. Zeit. Pflanz. Bodenkunde 146, 663–659.

    Google Scholar 

  • Mathur S. P. (1972) Infrared evidence of quinones in soil humus. Soil Sci. 113, 136–139.

    Article  CAS  Google Scholar 

  • Matsuda, K. and Schnitzer, M. (1972) The permanganate oxidation of humic acids extracted from acid soils. Soil Sci. 114, 185–193.

    Article  CAS  Google Scholar 

  • Maximov, O. B., Shvets, T. V and Elkin, Yu. N. (1977) On permanganate oxidation of humic acids. Geoderma 19, 73–78.

    Article  Google Scholar 

  • Mehlich, A. (1948) Determination of cation and anion exchange properties of soils. Soil Sci. 66, 429–445.

    Article  CAS  Google Scholar 

  • Merlet, D. (1971) Mise au point tecnique concernant l’extraction et la caracterisation des composés organiques dans les sols. Centre de Pedologie Biologique. CNRS Nancy. Doc. no. 15.

    Google Scholar 

  • Monnier, G, Turc, L. and Jeanson-Luusinang, C. (1962) Une méthode de fractionnement densimetrique par centrifugation des matières organiques du sol. Annales Agronomiques 13, 55–63.

    Google Scholar 

  • Nguyen, R. T. and Harvey, H. R. (1998) In: B. A. Stankiewicz and P. F. Van Bergen (eds), Nitrogencontaining Macromolecules in the Bio- and Geosphere. ACS Symposium Series 707, American Chemical Society, Washington, DC, pp. 88–112.

    Chapter  Google Scholar 

  • Parker, J. L., Fernández, I. J., Rustad, L. E. and Norton, S. A. (2001) Effects of nitrogen enrichment, wildfire, and harvesting on forest soil carbon and nitrogen. Soil Sci. Soc. Am. J. 65, 1248–1255.

    Article  CAS  Google Scholar 

  • Pastorova I., Botto R. E., Arisz P. W. and Boon J. J. (1994) Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohyd. Res. 262, 27–47.

    Article  CAS  Google Scholar 

  • Popoff, T. and Theander, O. (1972) Formation of aromatic compounds from carbohydrates. Part I. Reaction of D-glucuronic acid, D-galacturonic acid, D-xylose, and L-arabinose in slightly acidic, aqueous solution. Carbohyd. Res. 22, 135–149.

    Article  CAS  Google Scholar 

  • Popoff T. and Theander O. (1976) Formation of aromatic compounds from carbohydrates. Part III. Reaction of D-glucose and D-fructose in slightly acidic, aqueous solution. Acta Chem. Scand. 30, 397–402.

    Article  Google Scholar 

  • Post, W. M., Peng T. H., Emanuel, W. R., King, A. W., Dale, V. H. and De Angelis, D. L. (1990) The global carbon cycle. Am. Sci. 78, 310–326.

    Google Scholar 

  • Potthast, A., Schiene, R. and Fischer, K. (1996) Structural investigations of N-modified lignins by 15N- NMR spectroscopy and possible pathways for formation of nitrogen containing compounds related to lignin. Holzforschung 50, 554–562.

    Article  CAS  Google Scholar 

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J. and Wallace, D. W. R. (2001) The carbon cycle and atmospheric carbon dioxide. In: J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Preston, C. M., Ripmeester, J. A., Mathur, S. P. and Lévesque, M. (1986) Application of solution and solid-state multinuclear NMR to a peat-based composting systems for fish and crab scrap. Can. J. Spectroscopy 31, 63–69.

    CAS  Google Scholar 

  • Preston, C. M. (1992) The application of NMR to organic matter inputs and processes in forest ecosystems of the Pacific Northwest. Sci. Total Environ. 3, 107–120.

    Article  Google Scholar 

  • Ralph J. and Hatfield R. D. (1991) Pyrolysis-GC-MS characterization of forage materials. J. Agricul. Food Chem. August 1426–1437.

    Google Scholar 

  • Remmler, M. and Kopinke, F. D. (1995) Thermal conversion of hydrocarbons on solid matrices. Thermochim. Acta 263, 113–121.

    Article  CAS  Google Scholar 

  • Rosenfeld, A. and Kak, A. (1982) Digital Image Processing, Vol. 1. 2nd edn. Academic Press, Amsterdam.

    Google Scholar 

  • Savage, S. M., Osborn, J., Letey, J. and Heaton, C. (1972) Substances contributing to fire-induced water repellency in soil. Soil Sci. Soc. Am. Proc. 36, 674–678.

    Article  CAS  Google Scholar 

  • Savage, S. M. (1974) Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Am. Proc. 38, 652–657.

    Article  CAS  Google Scholar 

  • Schmidt, M. W. I., Skjemstad, J. O., Gehrt, E. and Kögel-Knabner, I. (1999) Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50, 351–365.

    Article  Google Scholar 

  • Schnitzer, M. and Khan, S. U. (eds). (1972) Humic Substances in the Environment. Dekker, New York.

    Google Scholar 

  • Schnitzer, M. (1974) The methylation of humic substances. Soil Sci. 117, 94–102.

    Article  CAS  Google Scholar 

  • Schnitzer, M. (1977) Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones. Proceedings International Symposium on Soil Organic Matter, 3rd, Braunschweig, 6–10 Sept. 1976, Vol. II. International Atomic Energy Agency, pp. 117–132.

    Google Scholar 

  • Schnitzer, M. (1985) Nature of nitrogen in humic substances. In: R. G Aiken, D. M. Mcknight, R. L. Wershaw and P. MacCarthy (eds), Humic Substances in Soil Sediment and Water, Chap. 12. Wiley, pp. 303–325.

    Google Scholar 

  • Scholl, D. B. (1975) Soil wettability and fire in Arizona chaparral. Soil Sci. Soc. Am. Proc. 39, 356–361.

    Article  Google Scholar 

  • Schulten, H.-R. and Schnitzer, M. (1998) The chemistry of soil organic nitrogen: a review. Biol. Fertil. Soils 26, 1–15.

    Article  CAS  Google Scholar 

  • Shindo, H., Matsui, Y and Higashi, T. (1986a) Humus composition of charred plant residues. Soil Sci. Plant Nutr. 32, 475–478.

    Article  CAS  Google Scholar 

  • Shindo, H., Matsui, Y and Higashi, T. (1986b) A possible source of humic acids in volcanic ash soils in Japan — charred residue of Miscanthus sinensis. Soil Sci. 141, 8–87.

    Google Scholar 

  • Shindo, H. (1991) Elementary composition. Humus composition and decomposition in soil of charred grassland plants. Soil Sci. Plant Nutr. 37, 651–657.

    Article  CAS  Google Scholar 

  • Shyoya, M. and Ishiwatari, R. (1983) Laboratory thermal conversion of sedimentary lipids to kerogen-like matter. Organic Geochem. 5, 7–12.

    Article  Google Scholar 

  • Simoneit, B. R. T. and Mazurek, M. A. (1982) Organic matter of the troposphere — II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos. Environ. 16, 2139–2159.

    Article  CAS  Google Scholar 

  • Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M. and McClure, S. G (1996) The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251–271.

    Article  CAS  Google Scholar 

  • Skjemstad, J. O., Clark, P., Golchin, A. and Oades, H. M. (1997) Characterization of soil organic matter by solid state 13C NMR spectroscopy. In: G. Cadisch and K. E. Giller (eds), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, pp. 253–271.

    Google Scholar 

  • Smith, D., and G. Bowes. (1974) Loss of some elements in fly ash during old-fields burning Southern Ontario. Can. J. Soil Sci. 54, 215–214.

    Article  CAS  Google Scholar 

  • Solum, M. S., Pugmire, R.J., Grant, D. M., Fletcher, T. H. and Solomon, P. (1989) Solid-state carbon-13 NMR studies of coal char structure evolution. Soc. Div. Fuel Chem. 34, 1337–1346.

    CAS  Google Scholar 

  • Stevenson, F. J. (ed.). (1982) Humus Chemistry. Genesis, Composition, Reactions. Wiley, New York.

    Google Scholar 

  • Swan, E. P. (1995) Identity of a hydrocarbon found in a forest soil. Forest Prod. J. 15, 272.

    Google Scholar 

  • Takeda, H., Schuller, W. and Lawrence, R. W. (1998) Novel ring openings in methyl levopimarate. J. Organic Chem. 33, 3719–3722.

    Google Scholar 

  • Thorn, K. A., Folan, D. W., Arterburn, J. B., Mikita, M. A. and MacCarthy, P. (1989) Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids. Sci. Total Environ. 81/82, 209–218.

    Article  Google Scholar 

  • Tinoco, P. (2000) Caracterización molecular de la materia orgánica de suelos afectados por distintos tipos de degradación en la Comunidad de Madrid. PhD. Universidad Autónoma de Madrid.

    Google Scholar 

  • USDA (1972) Soil Survey Laboratory methods and procedures for collecting soil samples. Soil Conservation Service, Report 1.

    Google Scholar 

  • van der Marel, H. W and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam.

    Google Scholar 

  • Van Krevelen, D. W. (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284.

    Google Scholar 

  • Vega, J. A., Barâ, S. and Gil, M. (1985) Algunos aspectos a corto plazo del fwgo prescrito en pinares de Galicia. In: Estudios sobre prevenciôn y efectos ecolôgicos de los incendios forestales. Ministerio de Agricultura, pesca y Alimentaciôn/lnstituto. Nacional para la Conservation de la Naturaleza, Madrid, pp. 103–120.

    Google Scholar 

  • Vega, J. A. (1986) La investigation sobre incendios forestrales en España. Revision bibliografica, Proceedings Symposium. Bases Ecológicas para la Gestion Ambiental (Diputacion de Barcelona), pp. 17–24.

    Google Scholar 

  • Vega, J. A., (1985) Datos preliminares sobre el comportamiento del fuego prescrito para la reduction de combustible bajo pinares de Galicia. In: Ministerio de Agricultura (ed.), Estudios sobre Prevenciôn y Efectos Ecolôgicos de los Incendios Forestales, Madrid, pp. 51–57.

    Google Scholar 

  • Viro, P. J., (1974) Effects of forest fires on soil. In: T. T. Kolzlowski and C. E. Alhgreen (eds), Fire and Ecosystems. Academic Press, New York, pp. 8–45.

    Google Scholar 

  • Wang, S. -H. and P. R. Griffiths, P. R. (1985) Resolution enhancement of diffuse reflectance i. r. spectra of coals by Fourier self-deconvolution 1. C-H stretching and bending modes. Fuel 64: 229–236.

    Article  CAS  Google Scholar 

  • Wang, N and Low, M. J. D. (1990) The pyrolysis of a lignin. Report CA Section: 43 (Cellulose, Lignin, Paper, Other Wood Products). Energy Res. Abstr. 15, 13 pp.

    CAS  Google Scholar 

  • Wilson, M. A. (1987) NMR Techniques and Applications in Geochemistry and Soil Chemistry. Pergamon, Oxford, UK.

    Google Scholar 

  • Witanowsk, M., Stefaniak, L. and Webb, G. (1993) Nitrogen NMR spectroscopy. In: G A. Webb (ed.), Annual Reports on NMR Spectroscopy 25, Academic Press, London.

    Google Scholar 

  • Wright, J. R. and Schnitzer, M. (1961) An estimate of the aromaticity of the organic matter of a podzol soil. Nature 4777, 703–704.

    Article  Google Scholar 

  • Yanagita, T., Jiang, Y and Matsumoto, S. (1997) Carbohydrate and microbial decomposition of the rice-hull charred to different degrees. Nippon Dojo Hiryogaku Zasshi (Japanese) 68, 435–437.

    CAS  Google Scholar 

  • Yang, W. -J., Griffiths, P. R., Byler, D.M. and Susi, H. (1985) Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self-deconvolution. Appl. Spectroscopy 39, 282–287.

    Article  CAS  Google Scholar 

  • Zinkel, D. F., Rowe, J. W., Zank, L. C., Gaddie, D. W. and Ruckel, E. R. (1989) Unusual resin acids in tall oil. J. Am. Oil Chem. Soc. 48, 833–834.

    Google Scholar 

  • Zinkel, D. F., Zank, L. C. and Wesolowski, M. F. (1971). Diterpene Resin Acids. USDA Forest Service, Forest Product Laboratory, Madison, Wis., 190 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

González-Vila, F.J., Galmendros (2003). Thermal Transformation of Soil Organic Matter by Natural Fires and Laboratory-Controlled Heatings. In: Ikan, R. (eds) Natural and Laboratory-Simulated Thermal Geochemical Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0111-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0111-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6306-9

  • Online ISBN: 978-94-017-0111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics