Skip to main content

Perception and Processing of Nod Factor Signals

  • Chapter
  • 173 Accesses

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

Plant responses to Nod factors comprise a variety of processes that affect membrane transporters, the apoplastic milieu, metabolism, phytohormone balance and gene expression. While some of these responses occur in seconds after the first encounter of the root (hair) plasma membrane with the appropriate Nod factor, others need minutes, hours or days before becoming detectable. Following Nod factor perception by one or more putative plasma membrane receptors, activation of Ca2+ channels is the earliest response observed so far. The resulting Ca2+ influx stimulates anion channels which, giving rise to Cl release, depolarizes the cells and, by releasing organic anions, alkalizes the external space. Although these effects have not been found with all such investigated plant species, a function with respect to permitting the symbiotic rhizobial bacteria access to the root hair symplast appears likely. The conspicuous root hair deformation seems to be caused by a perturbation in apical free Ca2+ which causes both a rapid breakdown of the root hair cytoskeleton followed by its rearrangement. Ca2+ spiking in the nucleous area, that occurs with a 10 min delay, may be connected with gene activation leading to the early nodulin gene expression in connection with plant development and nodule formation. Although Nod factors (without rhizobia being present) induce the formation of nodules in certain legumes, they may not be the primary signal. As, due to an imbalance of phytohormones (auxin and cytokinin), nodules may spontaneously form, gene products like ENOD40 are very likely the trigger or regulator of cortical cell divisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen N S, Bennet M N, Cox D N, Shipley A, Erhardt D W and Long S R (1994) Effects of Nod factors on alfalfa root hair Cat+ and H+ currents and on cytoskeletal behaviour. In: Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3 (Eds Daniels M J, Downie J A and Osbourn A E ), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 107–113.

    Chapter  Google Scholar 

  • Ardourel M, Demont N, Debellé F, Maillet F, de Billy F, Promé J-C, Dénarié J and Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell, 6: 1357–1374.

    CAS  Google Scholar 

  • Baier R, Schiene K, Kohring B, Flaschel E and Niehaus K (1999) Alfalfa and tobacco cells react differently to chitin oligosaccharides and Sinorhizobium meliloti nodulation factors. Planta, 210: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Bono J J, Riond J, Nicolaou K C, Bockovich N J, Estevez V A, Cullimore J V and Ranjeva R (1995) Characterization of a binding site for lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J, 7: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Cardenas L, Feijo J A, Kunkel J G, Sanches F, Holdaway-Clarke T L, Hepler P K and Quinto C (1999) Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J., 19: 347–352.

    CAS  Google Scholar 

  • Cardenas L, Holdaway-Clarke T L, Sanches F, Quinto C, Feijo J A, Kunkel J G and Hepler P K (2000) Ion changes in legume root hairs responding to Nod factors. Plant Physiol., 123: 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Cardenas L, Vidali L, Dominguez J, Pérez H, Sanchez F, Hepler P K and Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol., 116: 871–877.

    Article  CAS  Google Scholar 

  • Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T and Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol. Chem., 275: 36734–36740.

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E and Van den Bosch K (1995) Transient induction of a peroxi dase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell, 7: 43–55.

    CAS  Google Scholar 

  • Cullimore J V, Ranjeva R and Bono J J (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci., 6: 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Dalla Serra M, Sutton J M, Höper F, Downie J A and Menestrina G (1999) Effects of calcium and protons on the secondary structure of the nodulation protein NodO from Rhizobium leguminorarum biovar viciae. Biochem. Biophys. Res. Commun., 263: 516–522.

    Article  CAS  Google Scholar 

  • De Ruijter N C A, Rook M B, Bisseling T and Emons A (1998) Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip. Plant J, 13: 341–350.

    Article  Google Scholar 

  • Dietrich A, Mayer J E and Halbrock K (1990) Fungal elicitor triggers rapid, transient and specific protein phosphorylation in parsley cell suspension cultures. J Biol. Chem., 265: 6360–6368.

    PubMed  CAS  Google Scholar 

  • Downie J A (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbial., 2: 318–323.

    Article  CAS  Google Scholar 

  • Downie J A and Walker S A (1999) Plant responses to nodulation factors. Cure Op. Plant Biol., 2: 483–489.

    Article  CAS  Google Scholar 

  • Erhardt D W, Atkinson E M and Long S R (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science, 256: 998–1000.

    Article  Google Scholar 

  • Erhardt D W, Wais R and Long S R (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell, 85: 673–681.

    Article  Google Scholar 

  • Felix G, Grosskopf D G, Regenass M and Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA, 88: 8831–8834.

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Regenass M and Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J, 4: 307–316.

    Article  CAS  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1995) Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide. Plant J, 10: 295–301.

    Article  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals. Plant.J, 10: 295–301.

    Article  CAS  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1998a) The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J., 13: 455–463.

    Article  CAS  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1998b) Analysis of early events in Nod factor signalling in root hairs of Medicago. In: Biological Nitrogen Fixation for the 21st Century (Ed Elmerich C ), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 253–253.

    Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1999a) Nod factors modulate the cytosolic [Ca2+] differently in growing and non-growing root hairs of Medicago sativa. Planta, 209: 207–212.

    Article  CAS  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (1999b) Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol., 121: 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Felle H H, Kondorosi É, Kondorosi A and Schultze M (2000) How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol., 124: 1373–1380.

    Article  PubMed  CAS  Google Scholar 

  • Gehring C A, Irving H R, Kabarra A A, Parish R W, Boukli N M and Broughton W J (1997) Rapid, plateau-like increases in intracellular free calcium are associated with Nod-factor-induced root hair deformation. Mol. Plant Microbe Interact., 7: 791–802.

    Article  Google Scholar 

  • Geurts R and Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol., 112: 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Goedhart J et al. (2000) In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls. Plant J, 21: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Gressent F (1999) Ligand specificity of a high-affinity binding site for lipochito-oligosaccharidic Nod factors in Medicago cell suspension cultures. Proc. Natl. Acad. Sci. USA, 96: 4704–4709.

    Article  PubMed  CAS  Google Scholar 

  • Grosskopf D G, Felix G and Boller T (1991) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett., 275: 177 180.

    Google Scholar 

  • Hahn M G (1996) Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol., 34: 387–412.

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Yang W C, Yalcin Y, Peck S, Emons A, van Kammen A and Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development, 124: 1781–1787.

    PubMed  CAS  Google Scholar 

  • Journet E P, Pichon M, Dedieu A, De Billy F, Truchet, G and Barker D G (1994) Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J., 6: 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Kohno T and Shimmen T (1988) Mechanism of Cat+ inhibition of cytoplasmic streaming in lily pollen tubes. J. Cell Sci., 91: 501–509.

    Google Scholar 

  • Kurkdjian A C (1995) Role of the differentiation of root epidermal cells in Nod factor (from Rhizobium meliloti)-induced root hair depolarization of Medicago sativa. Plant Physiol., 107: 783–790.

    Google Scholar 

  • Penmetsa R V and Cook D R (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial mutant. Science, 275: 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Pingret J L, Journet E P and Barker D G (1998) Rhizobium Nod factor signaling: evidence for a G protein-mediated transduction mechanism. Plant Cell, 10: 659–671.

    CAS  Google Scholar 

  • Ridge R W (1992) A model of legume root hair growth and Rhizobium infection. Symbiosis, 14: 359–373.

    Google Scholar 

  • Salzwedel J L and Dazzo F B (1993) pSym nod gene influence on elicitation of peroxidase activity from white clover and pea roots by rhizobia and their cell-free supernatants. Mol. Plant Microbe Interact.,6: 127–134.

    Google Scholar 

  • Sânches F, Padilla J E, Pérez H E and Lara M (1991) Control of nodulin genes in root-nodule development and metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 507–528.

    Article  Google Scholar 

  • Spaink H P, Sheeley D M, van Brussel A A N, Glushka J, York W S, Tak T, Geiger O, Kennedy E P, Reinhold V N and Lugtenberg B J J (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature, 354: 125–130.

    Article  CAS  Google Scholar 

  • Stokkermans T J W and Peters N K (1994) Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja Siebold et Zucc. Planta,193: 413–420.

    Google Scholar 

  • Sutton J M, Lea E J A and Downie J A (1994) The nodulation-signalling protein Nod O from Rhizobium legu- minosarium biovar viciae forms ion channels in membranes. Proc. Natl. Acad. Sci. USA, 91: 9990–9994.

    Article  PubMed  CAS  Google Scholar 

  • Sutton J M, Peart J, Dean G and Downie J A (1996) Analysis of the C-terminal secretion signal of the Rhizobium leguminosarium nodulation protein NodO: A potential system for the secretion of heterologous proteins during nodule invasion. Mol. Plant Microbe Interact.,9: 671–680.

    Google Scholar 

  • Van de Sande K and Bisseling T (1997) Signalling in symbiotic root nodule formation. Ess. Biochern., 32: 127–142.

    Google Scholar 

  • Viard M P, Martin F, Pugin A, Ricci P and Blein J P (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol., 104: 1245–1249.

    PubMed  CAS  Google Scholar 

  • Vijn I, Martinez-Abarca F, Yang W C, das Neves L, van Brussel A, van Kammen A and Bisseling T (1995) Early nodulin gene expression during Nod factor-induced processes in Vicia faba. Plant J., 8: 111–119.

    Article  CAS  Google Scholar 

  • Wais R J, Galera C, Oldroyd G, Catoria R, Penmetsa R V, Cook D, Gough C, Dénarié J and Long S R (2000) Proc. Natl. Acad. Sci. USA, 97: 13407–13412.

    Article  PubMed  CAS  Google Scholar 

  • Walker S A, Viprey V and Downie J A (2000) Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl. Acad. Sci. USA, 97: 13413–13418.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama T, Kobayashi N, Kouchi H, Minamisawa K, Kaku H and Tsuchiya K (2000) A lipochitooligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells. Plant J, 22: 71–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Felle, H.H. (2003). Perception and Processing of Nod Factor Signals. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics