Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

Legumes are one of the most significant groups of economically important crops and have therefore been the subject of efforts to improve desirable traits through in vitro manipulations. Efforts are directed for developing efficient regeneration system in order to facilitate development of a variety of technologies. Even though many legumes have undergone de novo regeneration, limited contributions to crop improvement have been achieved. Successful regeneration is, in many cases, genotype and explant specific. In recent years, focus has been on development of plant regeneration systems amenable for gene transfer technology. Organogenesis has been utilized in many cases for transformation, but somatic embryogenesis shows a great promise as prolific production system for gene transfer for those legumes which do not regenerate via organogenesis. Currently, sufficient knowledge is available only for designing and optimizing de novo regeneration systems for many legumes, but not for successful and hassle-free genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Mandour A A and Hartung W (1980) The effect of abscisic acid on growth and development of intact seedlings, root and callus cultures and stem and root segments of Phaseolus coccineus. Z. Pflanzenphysiol., 100: 25–33.

    CAS  Google Scholar 

  • Adkins A L, Godwin I D and Adkins S W (1995) An efficient in vitro regeneration system for Australian-grown chickpea (Citer arietinum). Aust..L Bot., 43: 491–497.

    Article  Google Scholar 

  • Ahmad M, Fautrier A G, McNeil D L, Hill G D and Burritt D J (1996) In vitro propagation of Lens species and their Fi interspecific hybrids. Plant Cell Tiss. Org. Cult., 47: 169–176.

    Article  Google Scholar 

  • Ahmed R, Gupta S D and De D N (1996) Somatic embryogenesis and plant regeneration from leaf derived callus of winged bean (Psophocarpus tetragonolobus (L.) DC). Plant Cell Rep., 15: 531–535.

    Article  CAS  Google Scholar 

  • Akasaka Y, Mii M and Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rhizogenesis-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann. Bot., 81: 355–362.

    Article  Google Scholar 

  • Akella V and Lurquin P F (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep.,12: 110–117.

    Google Scholar 

  • Albrecht C and Kohlenbach H W (1989) Induction of somatic embryogenesis in leaf-derived callus of Vicia narbonensis L. Plant Cell Rep., 8: 267–269.

    Article  CAS  Google Scholar 

  • Altaf N and Ahmad M S (1985) Plant regeneration and propagation of chickpea (Cicer arietinum L.) through tissue-culture techniques. In: Proc. Symp. Nuclear Tech and In Vitro culture for plant improvement, IAEA/FAO, Vienna, pp. 407–417.

    Google Scholar 

  • Altaf N and Ahmad M S (1986) Chickpea (Cicer arietinum). In: International Atomic Energy Authority, Wein: IAEA, Wein, pp. 407–417.

    Google Scholar 

  • Altaf N and Ahmad M S (1990) Chickpea (Cicer arietinum). In: Biotechnology in Agriculture and Forestry, Vol. 10 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 101–113.

    Google Scholar 

  • Anbazhagan V R and Ganapathi A (1999) Somatic embryogenesis in cell suspension cultures of pigeonpea. Plant Cell Tiss. Org. Cult.,56: 179–184.

    Google Scholar 

  • Angelini R R and Allavena A (1989) Plant regeneration from immature cotyledon explant cultures of bean (Phaseolus coccineus L.). Plant Cell Tiss. Org. Cult., 19: 167–174.

    Article  Google Scholar 

  • Anonymous (1999) FAO Production Year Book, Rome.

    Google Scholar 

  • Aragâo F J L, Barros L M G, Brasileiro A C M, Ribeiro S G, Smith F D, Sanford J C, Faria J C and Rech E L (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor. Appl. Genet.,93: 142–150.

    Google Scholar 

  • Aragâo F J L, Grossi de Sa M F and Almeida E R (1992) Particle bombardment-mediated transient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L.). Plant Mol. Biol.,20: 357–359.

    Google Scholar 

  • Aragâo F J L, Grossi de Sa M F, Davey M R, Brasileiro A C M, Faria J C and Rech E L (1993) Factors influencing transient gene expression in bean (Phaseolus vulgaris L.) using an electrical particle acceleration divice. Plant Cell Rep., 12: 483–490.

    Article  Google Scholar 

  • Aragâo F J L and Rech E L (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.). of a Carioca cultivar. Int. J. Plant Sci.,158: 157–163.

    Google Scholar 

  • Aragâo F J L, Ribeiro S G, Barros L M G, Brasileiro A C M, Maxwell D P, Rech E L and Faria J C (1998) Transient beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden masaic geminivirus. Mol. Breed., 4: 491–499.

    Article  Google Scholar 

  • Ariyanayagam R P and Spence J A (1978) A possible gene source for early, day length neutral pigeonpea (Cajanus cajan (L.) Millsp). Euphytica,27: 505–509.

    Google Scholar 

  • Atreya C D, Rao J P and Subrahmanyam N C (1984) In vitro regeneration of peanut (Arachis hypogaea) plantlets from embryo axis and cotyledon segments. Plant Sci. Lett., 34: 379–383.

    Google Scholar 

  • Bailey M A, Boerma H R and Parrott W A (1993) Genotype-specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci., 93: 117–120.

    Google Scholar 

  • Bajaj Y P S (1979) Freeze preservation of meristems of Arachis hypogaea and Cicer arietinum. Indian J Exp. Biol.,17: 1405–1407.

    Google Scholar 

  • Bajaj Y P S (1983) Production of normal seeds from plants regenerated from the meristems of Arachis hypogaea and Cicer arietinum cryopreserved for 20 months. Euphytica, 32: 425–430.

    Article  Google Scholar 

  • Bajaj Y P S (1990) Wide hybridization in legumes and oil seed crops through embryo, ovule and ovary culture. In: Biotechnology in Agriculture and Forestry, Vol. 10 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 3–37.

    Google Scholar 

  • Bajaj Y P S and Dhanju M S (1979) Regeneration of plants from apical meristem tips of some legumes. Cure. Sci., 48: 906–907.

    Google Scholar 

  • Bajaj Y P S, Kumar P, Labana K S and Singh M M (1981b) Regeneration of plants from seedling explants and callus cultures of Arachis hypogaea. Indian J. Exp. Biol., 19: 1026–1029.

    Google Scholar 

  • Bajaj Y P S, Ram A K, Labana K S and Singh H (1981a) Regeneration of genetically variable plants from the anther-derived callus of Arachis hypogaea and Arachis villosa. Plant Sei. Lett., 23: 35–39.

    Article  Google Scholar 

  • Bajaj Y P S and Singh H (1980) In vitro induction of androgenesis in mung bean (Phaseolus aureus). Indian J Exp. Biol., 18: 1316–1318.

    CAS  Google Scholar 

  • Bajaj Y P S, Singh H and Gosal S S (1980) Haploid embryogenesis in anther cultures of pigeonpea (Cajanus cajan). Theort. Appl. Genet., 58: 157–159.

    Article  Google Scholar 

  • Baker C M and Wetzstein H Y (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut, Arachis hypogaea L.). Plant Cell Rep., 11: 71–75.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1994) Influence of auxin type and concentration on peanut somatic embryogenesis. Plant Cell Tiss. Org. Cult., 36: 361–368.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1995) Repetitive somatic embryogenesis in peanut cotyledon cultures by continual exposure to 2,4-D. Plant Cell Tiss. Org. Cult., 40: 249–254.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1998) Leaflet development, induction time and medium influence somatic embryogenesis in peanut (Arachis hypogaea L.). Plant Cell Rep., 17: 925–929.

    Article  CAS  Google Scholar 

  • Baker C M, Burns J A and Wetzstein H Y (1994) Influence of photoperiod and medium formulation on peanut somatic embryogenesis. Plant Cell Rep., 13: 159–163.

    Article  CAS  Google Scholar 

  • Baker C M, Durham R E, Burus J A, Parrott W A and Wetzstein H Y (1995) High frequency somatic embryogenesis in peanut (Arachis hypogaea L.) using mature, dry seed. Plant Cell Rep., 15: 38–42.

    Article  CAS  Google Scholar 

  • Baldes R, Moos M and Geider K (1987) Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Plant Mol. Biol., 9: 135–145.

    Article  CAS  Google Scholar 

  • Banerjee S, Bandhopadhay S and Ghosh P D (1988) Cotyledonary node culture and multiple shoot formation in peanut: Evidences for somatic embryogenesis. Cure Sei., 57: 252–255.

    Google Scholar 

  • Barna K S and Wakhlu A K (1993) Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 521–524.

    Article  CAS  Google Scholar 

  • Barna K S and Wakhlu A K (1994) Whole plant regeneration of Cicer arietinum from callus cultures via organogenesis. Plant Cell Rep., 13: 510–513.

    Article  CAS  Google Scholar 

  • Barros L M G, Gama M I C S, Gonsalves C H R D, Barreto C C, Santana E F and Carneiro V T D (1997) Bean

    Google Scholar 

  • tissue culture for introduction of foreign gene. Pesquisa Agropecuaria Brasileira,32: 267–275.

    Google Scholar 

  • Barwale U B and Widholm J M (1987) Somaclonal variation in plants regenerated from cultures of soybean. Plant Cell Rep., 6: 365–368.

    Article  Google Scholar 

  • Barwale U B and Widholm J M (1990) Soybean: plant regeneration and somaclonal variation. In: Biotechnology in Agriculture and Forestry, Vol. 10 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 114–133.

    Google Scholar 

  • Barwale U B, Kerns H R and Widholm J M (1986) Plant regeneration from callus cultures of several soybean genoytpes via embryogenesis and organogenesis. Planta, 167: 473–481.

    Article  CAS  Google Scholar 

  • Bean S J, Gooding P S, Mullineaux P M and Davies D R (1997) A simple system for pea transformation. Plant Cell Rep., 16: 513–519.

    Google Scholar 

  • Bencheikh M and Gallais A (1996a) Study of the variation in the somatic embryogenesis ability of some pea lines (Pisum sativum L. and Pisum arvense L.). Euphytica, 90: 251–256.

    Article  Google Scholar 

  • Bencheikh M and Gallais A (1996b) Somatic embryogenesis in pea (Pisum sativum L. and Pisum arvense L.): Diallel analysis and genetic control. Euphytica, 90: 257–264.

    Article  Google Scholar 

  • Benedicic D, Ravnikar M and Gogala N (1997) The regeneration of bean plants from me stem culture. PhytonAnn. Rei. Bot., 37: 151–160.

    CAS  Google Scholar 

  • Betal S and Sen Raychaudhuri S (1999) Micropropagation of the endangered aromatic varieties of Vigna radiata (L.) Wilczek in West Bengal, India. In Vitro Cell. Dev. Biol. Plant, 35: 76–78.

    Google Scholar 

  • Bhargava S and Chandra N (1983) In vitro differentiation in callus cultures of mothbean Vigna aconitifolia (Jacq.) Marechal. Plant Cell Rep., 2: 47–50.

    Google Scholar 

  • Bhargava S and Chandra N (1989) Factors affecting regeneration from leaf explants of mothbean Vigna aconitifolia (Jacq.) Marechal. Indian J Exp. Biol., 27: 55–57.

    CAS  Google Scholar 

  • Bhargava S C and Smigocki A C (1994) Transformation of tropical grain legumes using pariticle bombardment. Cure Sei., 66: 439–442.

    Google Scholar 

  • Bhatia C R, Murthy G S and Mathews V M (1985) Regeneration of plants from deembryonated peanut cotyledons cultured without nutrients and agar. Z. Pflanzenzuchtg, 94: 149–155.

    Google Scholar 

  • Binding H and Nehls R (1978) Regeneration of isolated protoplasts of Vicia. faba L. Z. P. flanzenphysiol., 88: 327–332.

    Google Scholar 

  • Bliss FA (1990) Genetic alteration of legume seed proteins. HortSci., 25: 1517–1520.

    Google Scholar 

  • Boehmer P, Meyer B and Jocobsen H J (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep., 15: 26–29.

    Article  CAS  Google Scholar 

  • Bond J E, McDonnell R E and Gresshoff P M (1996) Susceptibility of nodulation mutants of soybean (Glycine max) to Agrobacterium tumefaciens. J. Plant Physiol., 148: 684–692.

    Article  CAS  Google Scholar 

  • Brandt E B and Hess D (1994) In vitro regeneration and propagation of chickpea (Cicer arietinum L.) from meristem tips and cotyledonary nodes. In Vitro Cell. Dev. Biol. Plant, 30: 75–80.

    Article  Google Scholar 

  • Brar M S, AlKhayri J M, Shamblin C E, McNew R W, Morelock T E and Anderson E J (1997) In vitro shoot tip multiplication of cowpea (Vigna unguiculata L.) Walp. In Vitro Cell. Dev. Biol. Plant, 33: 114–118.

    Article  CAS  Google Scholar 

  • Brar M S, AlKhayri J M, Morelock T E and Anderson E J (1999a) Genotypic response of cowpea (Vigna unguiculata L.) Walp to in vitro regeneration from cotyledon explants. In Vitro Cell. Dev. Biol. Plant, 35: 8–12.

    Google Scholar 

  • Brar G S, Cohen B A, Vick C L and Johnson G W (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELLâ technology. Plant J., 5: 745–753.

    Article  Google Scholar 

  • Brar M S, Moore M J, AlKhayri J M, Morelock T E and Anderson E J (1999b) Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.). In Vitro Cell. Dev. Biol. Plant, 35: 222–225.

    Google Scholar 

  • Brasileiro A C M, Aragao F J L, Rossi S, Dusi D M A, Barros L M G and Rech E L (1996) Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. J. Am. Soc. Hort. Sci., 121: 810–815.

    Google Scholar 

  • Buchheim J A, Colburn S M and Ranch J P (1989) Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol., 89: 768–775.

    Article  PubMed  CAS  Google Scholar 

  • Chandra M and Pal A (1995) Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep., 15: 248–253.

    CAS  Google Scholar 

  • Chandra R Chatrath A, Polisetty Rand Khetarpal S (1993) Differentiation of in vitro grown explants of chickpea (Cicer arietinum L.). Indian J Plant Physiol.,36:121–124.

    Google Scholar 

  • Chandra R, Khetrapal S and Polisetty R (1998) Effect of plant growth regulators on evolution of ethylene and methane by different explants of chickpea. Biol. Plant., 40: 337–343.

    Article  Google Scholar 

  • Chee P P, Fober K A and Slightom J L (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol., 91: 1212–1218.

    Article  CAS  Google Scholar 

  • Cheema H K and Bawa J (1991) Clonal multiplication via multiple shoots in some legumes (Vigna unguiculata and Cajanus cajan). Acta. Hortic., 289: 93–94.

    Google Scholar 

  • Cheng H-H and Yeh M-S (1997) Studies on immature embryo of peanut (Arachis hypogaea L.) Ill. In vitro organogenesis from immature embryo axes and cotyledons. Guoli Zhongxing Daxue Nonglin Xuebao, 46: 39–51.

    CAS  Google Scholar 

  • Cheng M, Hsi D C H and Phillips G C (1992) In vitro regeneration of Valencia-type peanut (Arachis hypogaea L.) from cultured petioles, epicotyl sections and other seedling explants. Peanut Sci., 19: 82–87.

    Google Scholar 

  • Cheng M, Jarret R L, Li Z and Demski J W (1997) Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium mediated transformation. Plant Cell Rep., 16: 541–544.

    Google Scholar 

  • Cheng M, Jarret R L, Li Z, Xing A and Demski J W (1996) Production of fertile transgenic peanut (A rachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep., 15: 653–657.

    Article  CAS  Google Scholar 

  • Cheng T-Y, Saka H and Voqui-Dinh T H (1980) Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci. Lett., 19: 91–99.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1995) In vitro regulation of morphogenesis in peanut (Arachis hypogaea L.). Plant Sci., 110: 259–268.

    CAS  Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1997) High-frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep., 16: 783–786.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1998) Genotypic control of peanut somatic embryogenesis. Plant Cell Rep., 17: 522–525.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Sathaye S S and Hazra S (1994) Somatic embryogenesis from mature emryo-derived leaflets of peanut (Arachis hypogaea L.). Plant Cell Rep., 13: 578–581.

    Article  CAS  Google Scholar 

  • Christianson M L, Warnick D A and Carlson P S A (1983) A morphogenetically competent soybean suspension culture. Science, 222: 632–6634.

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1990) Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot., 66: 379–386.

    CAS  Google Scholar 

  • Christou P and Yang N-S (1989) Developmental aspects of soybean (Glycine max) somatic embryogenesis. Ann. Bot., 64: 225–234.

    CAS  Google Scholar 

  • Christou P, McCabe D E and Swain W F (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol., 87: 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Christou P, McCabe D E, Swain W E and Russell D R (1993) Legume Transformation, CRC Press Inc, UK, pp. 547–564.

    Google Scholar 

  • Christou P, Murphy J E and Swain W F (1987) Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA, 84: 3962–3966.

    Article  PubMed  CAS  Google Scholar 

  • Christou P, Swain W F, Yang N and McCabe D E (1990) Cotransformation frequencies of foreign genes in soybean cell cultures. Theort. Appl. Genet., 79: 337–341.

    Article  CAS  Google Scholar 

  • Constabel F and Shyluk J P (1994) Initiation, nutrition and maintenance of plant cell and tissue cultures. In: Plant Cell and Tissue Culture (Eds Vasil J K and Thorpe T A ), Kluwer Academic Publishers, Dordrecht, pp. 3–15.

    Google Scholar 

  • Crepy L, Barros L M G and Valente V R N (1986) Callus production from leaf protoplasts of various cultivars of bean (Phaseolus vulgaris L.). Plant Cell Rep., 5: 124–126.

    Article  CAS  Google Scholar 

  • D’Silva I and Podder S K (1995) Peanut agglutinin from callus and cell suspension cultures of Arachis hypogaea L. Plant Cell Rep., 14: 50–54.

    Google Scholar 

  • Daimon H and Mii M (1991) Plant formation of peanut by somatic embryogenesis and organogenesis. Jpn. J Breed., 41: 461–466.

    Google Scholar 

  • Dan Y H and Reichert N A (1998) Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell. Devlop. Biol. Plant, 34: 14–21.

    Google Scholar 

  • Das D K, Prakash N S and Bhalla-Sarin N (1998) An efficient regeneration system of black gram (Vigna mungo L.) through organogenesis. Plant Sci., 134: 199–206.

    Article  CAS  Google Scholar 

  • Davey M R, Kumar V and Hammatt N (1994) In vitro culture of legumes. In: Plant Cell and Tissue Culture (Eds Vasil I K and Thorpe T A), Kluwer Academic Publishers, Dordrecht, pp. 313–329.

    Google Scholar 

  • Davies M R, Hammilton J and Mullineaux (1993) Transformation of peas. Plant Cell Rep., 12: 180–183.

    Article  CAS  Google Scholar 

  • de Freitas V G, Lacorte C, Sanchetto-Martins, Krul W R, de Oliveira D E, Neves L J and Mansur E (1997) Identification of competent cells for Agrobacterium transformation and in vitro regeneration in peanut leaf and cotyledon explant. On Revo Bras. Fisiol. Veg., 9: 157–167.

    Google Scholar 

  • de Kathen A D and Jacobsen H J (1990) Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Rep., 9: 276–279.

    CAS  Google Scholar 

  • de Kathen A D and Jacobsen H J (1995) Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L. Transgenic Res., 4: 184–191.

    Article  CAS  Google Scholar 

  • Dhir S K, Dhir S and Widholm J M (1991a) Plantlet regeneration from immature cotyledon protoplasts of soybean (Glycine max (L.) Merrill). Plant Cell Rep., 10: 39–43.

    Google Scholar 

  • Dhir S K, Dhir S and Widholm J M (1992a) Regeneration of fertile plants from protoplasts of soybean (Glycine max (L.) Merrill): genotypic differences in culture response. Plant Cell Rep., 11: 285–289.

    Article  Google Scholar 

  • Dhir S K, Dhir S, Hepburn A and Widholm J M (1991b) Factors affecting transient gene expression in electroporated Glycine max protoplasts. Plant Cell Rep., 10: 106–110.

    CAS  Google Scholar 

  • Dhir S K, Dhir S, Savka M A, Belanger F, Kriz A L, Farrand S K and Widholm J M (1992b) Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts. Plant Physiol., 99: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Dhir S K, Dhir S, Sturtevant A P and Widholm J M (1991e) Regeneration of transformed shoots from electroporated soybean (Glycine max (L.) Merrill) protoplasts. Plant Cell Rep., 10: 97–101.

    Google Scholar 

  • Di R, Purcell V, Collins G B and Ghabrial S A (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep., 15: 746–750.

    Article  CAS  Google Scholar 

  • Dillen W, DeClerq J, Goossens A, Montagu M V and Angenon G (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A Gray. Theort. Appl. Genet., 94: 151–158.

    CAS  Google Scholar 

  • Dillen W, DeClerq J, Montagu M V and Angenon G (1996) Plant regeneration from callus in a range of Phaseolus acutifolius A. Gray genotypes. Plant Sci., 118: 81–88.

    Article  CAS  Google Scholar 

  • Dillen W, Engler G, Montagu MV and Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep., 15: 119–124.

    Article  CAS  Google Scholar 

  • Dineshkumar V, Kirti P B, Sachan J K S and Chopra V L (1994) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep., 13: 468–472.

    Google Scholar 

  • Dineshkumar V, Kirti P B, Sachan J K S and Chopra V L (1995) Picloram induced somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Sci., 109: 207–213.

    Article  CAS  Google Scholar 

  • Donn G (1978) Cell division and callus regeneration from leaf protoplasts of Vicia narbonensis. Z. Pflanzenphysiol., 86: 65–75.

    CAS  Google Scholar 

  • Duke J A (1981) Handbook of Legumes of World Economic Importance, Plenum Press, New York.

    Book  Google Scholar 

  • Dundas I S (1985) Studies into overcoming some crossability barriers involving pigeonpea (Cajanus cajan (L.) Millsp.) and related Atylosia species. Post-Doctoral Internship Report, Legumes Program, ICRISAT, Patancheru, India.

    Google Scholar 

  • Durham R E and Parrott W A (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep., 11: 122–125.

    Article  Google Scholar 

  • Eapen S and George L (1990) Ontogeny of somatic embryos of Vigna aconitifblia, V mungo and V radiata. Ann. Bot., 66: 219–226.

    Google Scholar 

  • Eapen S and George L (1993a) Somatic embryogenesis in peanut: Influence of growth regulators and sugars. Plant Cell. Tiss. Org. Cult., 35: 151–156.

    Article  CAS  Google Scholar 

  • Eapen S and George L (1993b) Plant regeneration from leaf discs of peanut and pigeonpea — influence of benzyladenine, indoleacetic acid and indoleacetic acid amino acid conjugates. Plant Cell. Tiss. Org. Cult., 35: 223–227.

    Article  CAS  Google Scholar 

  • Eapen S and George L (1994a) Somatic embryogenesis in Cicer arietinum L.: Influence of genotype and auxins. Biol. Plant., 36: 343–349.

    Article  Google Scholar 

  • Eapen S and George L (1994b) Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep.,13: 582–586.

    Google Scholar 

  • Eapen S, George L and Rao P S (1993) Plant regeneration through somatic embryogenesis in peanut (Arachis hypogaea L.). Biol. Plant, 35: 499–504.

    Article  Google Scholar 

  • Eapen S, Kohler F, Gerdemann M and Schieder O (1987) Cultivar dependence of transformation rates in mothbean after co-cultivation of protoplasts with Agrobacterium tumefaciens. Theort. Appl. Genet., 75: 207–210.

    Google Scholar 

  • Eapen S, Tivarekar S and George L (1998) Thidiazuron-induced shoot regeneration in pigeonpea (Cajanus cajan L.). Plant Cell Tiss. Org. Cult., 53: 217–220.

    Article  CAS  Google Scholar 

  • Egnin M, Mora A and Prakash C S (1998) Factors enhancing Agrobacterium-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cell. Dev. Biol. Plant, 34: 310–318.

    Google Scholar 

  • Erhardt M, Herzog E, Lauber E, Fritsch C, Guilley H, Jonard G, Richards K and Bouzoubaa S (1999) Transgenic plants expressing the TGB 1 protein of peanut clump virus complement movement of TGB 1-defective peanut clump virus but not of TGB 1-defective beet necrotic yellow vein virus. Plant Cell Rep., 18: 614–619.

    Article  CAS  Google Scholar 

  • Falco S C, Guida T, Mauvais J, Sanders C, Ward R T and Webber P (1995) Transgenic canola and soybean seed with increased lysine. Bio/Technology, 13: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Feng Q L, Stalker H T and Pattee H E (1996) Plant recovery of selfs and interspecific hybrids of Arachis by in vitro culture of peg tips. Crop Sci., 36: 1660–1666.

    Article  Google Scholar 

  • FernandezCaso M, Pelaez M I and Ruiz M L (1996) Onset of in vitro morphogenic response and protein pattern changes in Phaseolus vulgaris L. J Plant Physiol., 149: 757–761.

    Article  CAS  Google Scholar 

  • Finer J J (1988) Apical proliferation of embryogenic tissue of soybean (Glycine max (L.) Merrill). Plant Cell Rep., 7: 238–241.

    Article  Google Scholar 

  • Finer J J and McMullen M D (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. Plant, 27: 175–182.

    Google Scholar 

  • Finer J J and Nagasawa A (1988) Development of embryogenic suspension culture of soybean (Glycine max Merrill). Plant Cell Tiss. Org. Cult., 15: 125–136.

    Article  CAS  Google Scholar 

  • Fontana G S, Santini L, Caretto S, Frugis G and Mriotii D (1993) Genetic transformation in the grain legume Cicer arietinum L. (chickpea). Plant Cell Rep., 12: 194–198.

    Article  CAS  Google Scholar 

  • Franklin C 1, Trieu T N, Cassidy B G, Dixon R A and Nelson R S (1993) Genetic transformation of green bean callus via Agrobacterium mediated DNA transfer. Plant Cell Rep., 12: 74–79.

    Article  CAS  Google Scholar 

  • Franklin C I, Trieu T N, Gonzales R A and Dixon R A (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tiss. Org. Cult., 24: 199–206.

    Article  Google Scholar 

  • Franklin G, Jeyachandran R, Melchias G and Ignacimuthu S (1998) Multiple shoot induction and regeneration of pigeonpea (Cajanus cajan (L.) Millsp.) cv. Vamban 1 from apical and axillary meristem. Curr. Sei., 74: 936–937.

    Google Scholar 

  • Freytag A H, Rao-Arelli A P, Anand S C, Wrather J A and Owens L D (1989) Somaclonal variation in soybean plants regenerated from tissue culture. Plant Cell Rep., 8: 199–202.

    Article  Google Scholar 

  • Gamborg O L, Davis B P and Stahlhut R W (1983a) Somatic embryogenesis in cell culture in Glycine species. Plant Cell Rep., 2: 209–212.

    Article  Google Scholar 

  • Gamborg O L, Davis B P and Stahlhut R W (1983b) Cell division and differentiation in protoplasts from cell cultures of Glycine species and leaf tissues of soybean. Plant Cell Rep., 2: 213–215.

    Article  Google Scholar 

  • Gamborg O L, Miller R A and Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cultures. Exp. Cell Res., 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg O L, Shyluk J and Kartha K K (1975) Factors affecting the isolation and callus formation in protoplasts from the shoot apices of Pisum sativum L. Plant Sci. Lett., 4: 285–292.

    Article  CAS  Google Scholar 

  • Garcia J A, Hille J, Vos P and Goldbach R (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus m-RNA. Plant Sci., 48: 89–98.

    Article  CAS  Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997a) Plant regeneration and propagation of black gram (Vigna mungo (L.) Hepper) through tissue culture. Trop. Agric., 74: 73–76.

    Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997b) In vitro plant regeneration from different seedling explants of black gram (Vigna mungo (L.) Hepper) via organogenesis. Breed. Sci., 47: 311–315.

    CAS  Google Scholar 

  • Geetha N, Venkatachalam P, Prakash V and Laxmi Sita G (1998) High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus colon L.). Cure. Sci., 75: 1036–1041.

    CAS  Google Scholar 

  • Geetha N, Venkatachalam P and Sita G L (1999) Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis. Plant Biotech., 16: 213–218.

    CAS  Google Scholar 

  • Gehlot H S, Upadhyaya A, Davis T D and Sankhla N (1989) Growth and organogenesis in mothbean as affected by paclobutrazol. Plant Cell Physiol., 30: 933–936.

    CAS  Google Scholar 

  • Genga A and Allavena A (1991) Factors affecting morphogenesis from immature cotyledons of Phaseolus coccineus L. Plant Cell Tiss. Org. Cult., 27: 189–196.

    Article  CAS  Google Scholar 

  • Genga A, Ceriott A, Bollini R, Bernacchia G and Allavena A (1991) Transient gene expression in bean tissues by high velocity microprojectiles bombardment. J Genet. Breed., 45: 129–134.

    Google Scholar 

  • George L and Eapen S (1994) Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan L.). Plant Cell Rep., 13: 417–420.

    Article  CAS  Google Scholar 

  • Ghazi T D, Cheema H V and Nabors M W (1986) Somatic embryogenesis and plant regeneration from embryo-genic callus of soybean, Glycine max L. Plant Cell Rep., 5: 452–456.

    Article  CAS  Google Scholar 

  • Gill R and Eapen S (1986) Plant regeneration from hypocotyl protoplasts of mothbean (Vigna aeon itiji lia). Cure. Sci., 55: 100–102.

    Google Scholar 

  • Gill R and Ozias-Akins P (1999) Thidiazuron-induced highly morphogenic callus and high frequency regeneration of fertile peanut (Arachis hypogaea L.) plants. In Vitro Cell. Dev. Biol. Plant., 35: 445–450.

    Google Scholar 

  • Gill R and Saxena P K (1992) Direct somaic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea): Promotive role of thidiazuron. Can. J Bot., 70: 1186–1192.

    Article  CAS  Google Scholar 

  • Gill R, Eapen S and Rao P S (1986) Tissue culture studies in mothbean-factors influencing plant regeneration from seedling explants of different cultivars. Proc. Indian Acad. Sei. (Plant Sci.)., 96: 55–61.

    CAS  Google Scholar 

  • Giovinazo G, Greco V, Vitale A and Bollini R (1997) Bean (Phaseolus vulgaris L.) protoplasts as a model system to study the expression and stability of recombinant seed proteins. Plant Cell Rep., 16: 705–709.

    Article  Google Scholar 

  • Godbole D A, Kunachgi M N, Potdar U A, Krishnamurthy K V and Mascarenhas A F (1984) Studies on a drought resistant legume: The mothbean Vigna (Jacq) Marechal I1. Morphogenetic studies. Plant Cell Rep., 3: 75–78.

    Article  Google Scholar 

  • Gosal S S and Bajaj Y P S (1979) Establishment of callus-tissue cultures, and the induction of organogenesis in some grain legumes. Crop Improvement, 6: 154–160.

    Google Scholar 

  • Gosal S S and Bajaj Y P S (1983) In vitro hybridization in an incompatible cross — Blackgram X Greengram. Cure. Sci., 52: 556–557.

    Google Scholar 

  • Gram T, Matson O and Joersbo M (1996) Division frequency of pea protoplasts in relation to starch accumulation. Plant Cell Tiss. Org. Cult., 45: 179–183.

    Article  CAS  Google Scholar 

  • Grant J E (1984) Regeneration from cotyledonary tissue of Glycine canescenes, a perenial relative of the soybean. Plant Cell Tiss. Org. Cult., 3: 169–173.

    Article  Google Scholar 

  • Grant J E (1990) Soybean: Wide hybridization through embryo culture. In: Biotechnology in Agriculture and Forestry, Vol. 10 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 134–148.

    Google Scholar 

  • Grant J E, Cooper P A, Gilpin B J, Hoglund S J, Reader J K, PitherJoyce M D and Timmerman-Vaughan G M (1998) Kanamycin is effective for selecting transformed peas. Plant Sei., 139: 159–164.

    Article  CAS  Google Scholar 

  • Grant J E, Cooper P A, McAra A E and Frew T J (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep., 15: 254–258.

    Article  CAS  Google Scholar 

  • Griga M (1998) Direct somatic embryogenesis from shoot apical meristems of pea, and thidiazuron-induced high conversion rate of somatic embryos. Biol. Plant., 41: 481–495.

    Article  Google Scholar 

  • Gulati A and Jaiwal P K (1990) Culture conditions effecting plant regeneration from cotyledons of Vigna radiata (L.) Wilczek. Plant Cell Tiss. Org. Cull., 23: 1 7.

    Google Scholar 

  • Gulati A and Jaiwal P K (1992) In vitro induction of multiple shoots and plant regeneration from shoot tips of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Tiss. Org. Cult., 29: 199–205.

    CAS  Google Scholar 

  • Gulati A and Jaiwal P K (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep., 13: 523–527.

    Article  CAS  Google Scholar 

  • Gupta S D, Ahmed R and De D N (1997) Direct somatic embryogenesis and plantlet regeneration from seedling leaves of winged bean, Psophocarpus tetragonolobus (L.) DC. Plant Cell Rep., 16: 628–631.

    Article  Google Scholar 

  • Guru S K, Chandra R, Raj A, Khetrapal S and Polisetty R (1999) Evolution of ethylene and methane in relation to somatic embryogenesis in chickpea. Biol. Plant., 42: 149–154.

    Article  CAS  Google Scholar 

  • Gyulai G, Kiss E, Csillag A and Hesky L E (1993) Developmental analysis of primary and secondary somatic embryogenesis in soybean tissue culture. Acta Biol. Hung., 44: 189–196.

    PubMed  CAS  Google Scholar 

  • Hadi M Z, McMullen M D and Finer J J (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep., 15: 500–505.

    Article  CAS  Google Scholar 

  • Hammatt N, Ghose T K and Davey M R (1986) Regeneration in legumes. In: Cell Culture and Somatic Cell Genetics of Plants, Vol. 3 (Ed Vasil I K ), Academic Press, New York, pp. 67–95.

    Google Scholar 

  • Hammatt N, Jones B and Davey M R (1989) Plant regeneration from seedling explants and cotyledon protoplasts of Glycine argyrea Tind. In Vitro Cell Dev. Biol. Plant, 25: 669–672.

    Google Scholar 

  • Hammatt N, Kim H-I, Davey M R, Nelson R S and Cocking E C (1987a)) Plant regeneration from cotyledon protoplasts of Glycine canescenes and G. clandestina. Plant Sei.,48:129–135.

    Google Scholar 

  • Hammat N, Lister A, Jones B, Cocking E C and Davey M R (1992) Shoot formation from somatic hybrid callus between soybean and a perennial wild relative. Plant Sei., 85: 215–222

    Google Scholar 

  • Hammatt N, Nelson R S and Davey M R (1987b) Plant regeneration from seedling explants of perennial Glycine species. Plant Cell Tiss. Org. Cult., 11: 3–11.

    Google Scholar 

  • Hammatt N, Nelson R S and Davey M R (1987c) Plant regeneration from seedling cotyledons, petioles, and leaves of Glycine clandestina. Plant Physiol.,68: 125–128.

    Google Scholar 

  • Hartweck L M, Lazzeri P A, Cui D, Collins G B and Williams E G (1988) Auxin-orientation effects on somatic embryogenesis from immature soybean cotyledons. In Vitro Cell Dev. Biol. Plant, 24: 821–828.

    Google Scholar 

  • Hazra S, Sathaye S S and Mascarenhas A F (1989) Direct somatic embryogenesis in peanut (Arachis hypogaea). Bio/Technology, 7: 949–951.

    Article  Google Scholar 

  • Hepher A, Boulter M E, Harris N, Nelson R S (1988) Development of a superficial meristem during somatic embryogenesis from immature cotyledons of soybean (Glycine max L.). Ann. Bot., 62: 513–519.

    Google Scholar 

  • Hinchee M A W, Connor-Ward D V Newell C A, McDonnell R E, Sato S J, Gasser C S, Fischoff D A, Re D B, Fraley R T and Horsch R B (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technology, 6: 915–922.

    Google Scholar 

  • Hita O, Lafarga C and Guerra H (1997) Somatic embryogensis from chickpea (C. arietinum L.) immature cotyledons: The effect of zeatin, gibberellic acid and indole-3-butyric acid. Acta Physiol. Planta., 19: 333–338.

    Article  CAS  Google Scholar 

  • Hobbs S L A, Jackson J A and Mahon J D (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep., 8: 274–277.

    CAS  Google Scholar 

  • Hu C Y and Wang L Z (1999) In planta soybean transformation technologies developed in China: Procedure, confirmation and field performance. In Vitro Cell. Dev. Biol. Plant,35:417–420.

    Google Scholar 

  • Hu C Y and Zanettini M H B (1995) Embryo culture and embryo rescue for wide cross hybrids In: Plant Cell, Tissue and Organ Culture, Fundamental Methods (Eds Gamborg O L and Phillips G C), Springer-Verlag, Berlin, pp. 129–141.

    Google Scholar 

  • Hu T K (1997) In vitro culture of Arachis hypogaea peg tips as influenced by peg age, tip length and media. Guoli Zhongxing Daxue Nonglin Xuebao, 46: 1–12.

    CAS  Google Scholar 

  • Hulse J H (1989) Uses of tropical grain legumes. In: Proceedings of a Consultants’ Meeting, 27–30 Mar 1989, ICRISAT Center, Patancheru, India.

    Google Scholar 

  • Hussey G and Gunn H V (1984) Plant production in pea (Pisum sativum L. cvs Puget and Upton) from longterm callus with superficial meristems. Plant Sci. Lett., 37: 143–148.

    Article  CAS  Google Scholar 

  • Hymowitz T, Chalmers N L, Costanza S H and Saam M M (1986) Plant regeneration from leaf explants Glycine clandestina Wendt. Plant Cell Rep., 3: 192–194.

    Article  Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott M C and Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by TDZ and BAR. Plant Cell Rep., 18: 904–910.

    Article  CAS  Google Scholar 

  • Ignacimuthu S and Franklin G (1998) Regeneration of plantlets from cotyledon and embryonal axis explants of Vigna mungo (L.) Hepper. Plant Cell Tiss. Org. Cult., 55: 75–78.

    Article  CAS  Google Scholar 

  • Ilahi I, Sami R and Jabeen M (1995) Plantlet regeneration from mature embryos of peanut (Arachis hypogaea L.). Pakistan J. Bot., 27: 405–409.

    CAS  Google Scholar 

  • Illingworth J E (1968) Peanut plants from single deembryonated cotyledons. Hort. Sci., 3: 238–276.

    Google Scholar 

  • Islam R (1994) Somatic embryogenesis from immature cotyledons of chickpea (Cicer arietinum L.). Pakistan J Bot., 26: 197–199.

    Google Scholar 

  • Islam R, Malik T, Hussain T and Riazuddin S (1994) Strain and cultivar specificity in the Agrobacteriumchickpea interaction. Plant Cell Rep., 13: 561–563.

    Article  CAS  Google Scholar 

  • Jackson J A and Hobbs S L A (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell. Dev. Biol. Plant, 26: 835–838.

    Google Scholar 

  • Jacobsen H J and Kysley W (1984) Induction of somatic embryos in pea, Pisum sativum L. Plant Cell Tiss. Org. Cult., 3: 319–324.

    Article  CAS  Google Scholar 

  • Jain J and Chopra V L (1988) Genotypic differences in response to regeneration of in vitro cultures of mothbean Vigna aconitifolia (Jacq.) Marechal. Indian J. Exp. Biol., 26: 654–656.

    CAS  Google Scholar 

  • Jaiwal P K, Kumari R, Ignacimuthu S, Potrykus 1 and Sautter C (2001) Agrobacterium-mediated transformation of mungbean (Vigna radiata (L.) Wilczek), a recalcitrant grain legume. Plant Sci., 161: 239–247.

    CAS  Google Scholar 

  • Jaiwal P K, Sautter C and Potrykus I (1998) Agrobacterium rhizogenes-mediated gene transfer in mungbean (Vigna radiata (L.) Wilczek). Curr. Sci., 75: 41–45.

    CAS  Google Scholar 

  • Jenes B, Moore H, Cao J, Zhang W and Wu R (1993) Techniques for gene transfer. In: Transgenic Plants, Vol. 1 (Eds Kung S D and Wu R), Academic Press, Inc, New York, pp. 125–146.

    Google Scholar 

  • Jia S R (1982) Factors affecting the division frequency of pea mesophyll protoplasts. Can. J. Bot., 60: 2192–2196.

    Article  CAS  Google Scholar 

  • Joersbo M, Brunstedt J, Marcussen J and Okkels F T (1999) Transformation of the endospermous legume guar (Cyamopsis tetragonoloba L.) and analysis of transgene transmission. Mol. Breed., 5: 521–529.

    Article  CAS  Google Scholar 

  • Jordan M C and Hobbs L A (1993) Evaluation of a cotyledonary node regeneration system for Agrobacteriummediated transformation of pea (Pisum sativum L.). In Vitro Cell. Dev. Biol. Plant,29: 77–82.

    Google Scholar 

  • Joshi S, Upadhyaya A, Davis T D, Sankhla A K, Sankhla D and Sankhla N (1988) Interaction between abscisic acid and GA3 on in vitro regeneration from mothbean callus. Proc. Plant Growth Regul. Soc. Am., 15: 35–38.

    Google Scholar 

  • Kachonpadungkitti Y, Hisajima S and Arai Y (1992) Life cycle of peanut (Arachis hypogaea L.) plant in vitro. Biosci. Biotech. Biochem., 56: 543–546.

    Article  CAS  Google Scholar 

  • Kahl G, Kaemmer D, Weising K, Kost S, Weigand F and Saxena M C (1994) The potential of gene technology and genome analysis for cool season food legume crops — Theory and Practice. Euphytica, 73: 177–189.

    Google Scholar 

  • Kameya T and Widholm J (1981) Plant regeneration from hypocotyl sections Glycine species. Plant Sci. Lett., 21: 289–294.

    Article  CAS  Google Scholar 

  • Kaneda Y, TabeiY, Nishimura S, Harada K, Akihama T and Kitamura K (1997) Combination of thidiazuron and basal media with low salt concentrations increases frequency of shoot organogenesis in soybeans (Glycine max (L.) Merrill). Plant Cell Rep., 17: 8–12.

    CAS  Google Scholar 

  • Kanyand M, Desai A P and Prakash C S (1994) Thidiazuron promotes high frequency regeneration of peanut (Arachis hypogaea) plants in vitro. Plant Cell Rep., 14: 1–5.

    CAS  Google Scholar 

  • Kanyand M, Peterson C M and Prakash C S (1997) The differentiation of emergences into adventitious shoots in peanut. Plant Sci., 126: 87–95.

    Article  CAS  Google Scholar 

  • Kao K N, Keller W A and Miller R A (1970) Isolation of protoplasts from cultured soybean root cells. Exp. Cell Res., 62: 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Johnson T M, Nayak P and Sen S K (1996) Efficient plant regeneration through Agrobacteriummediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep., 16: 32–37.

    Article  CAS  Google Scholar 

  • Kartha K K, Pahl K, Leung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes: Soybean, cowpea, peanut, chickpea, and bean. Can. J. Bot., 59: 1671–1679.

    Article  CAS  Google Scholar 

  • Karthikeyan A S, Sarma K S and Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep., 15: 328–331.

    Article  CAS  Google Scholar 

  • Kerns H R, Barwale U B, Meyer Jr M M and Wildholm J M (1986) Correlation of cotyledonary node shoot proliferation and somatic embryo development in suspension cultures of soybean (Glycine max. Merrill). Plant Cell Rep., 5: 140–143.

    Article  Google Scholar 

  • Khalafalla M M and Hattori K (1999) A combination of thidiazuron and benzyladeninl promotes multiple shoot production from cotyledonary node explants of faba bean (Vicia faba L.). Plant Growth Reg., 27: 145–148.

    Article  CAS  Google Scholar 

  • Khan S K and Ghosh P D (1983) In vitro induction of androgenesis and organogenesis in Cicer arietinum L. Cure. Sci., 52: 891–893.

    CAS  Google Scholar 

  • Kim J W and Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci., 117: 131–138.

    Article  CAS  Google Scholar 

  • Kim J W and Minamikawa T (1997) Stable delivery of a canavalin promoter-beta-glucuronidase gene fusion into French bean by particle bombardment. Plant Cell Physiol., 38: 70–75.

    Article  CAS  Google Scholar 

  • Kim T, Chowdhury M K U and Wetzstein H Y (1999) A quantitative and histological comparison of gus expression with different promoter constructs used in microprojectile bombardment of peanut leaf tissue. In Vitro Cell. Dev. Biol. Plant, 35: 51–56.

    Google Scholar 

  • Kohler F, Golz C, Eapen S, Kohn H and Schieder 0 (1987) Influence of plant cultivar and plasmid-DNA on transformation rates in tobacco and mothbean. Plant Sci., 53: 87–91.

    Article  Google Scholar 

  • Komatsuda T and Ohyama K (1988) Genotypes of high competence for somatic embryogenesis and plant regeneration in Glycine max. Theort. Appl. Genet., 75: 695–700.

    Google Scholar 

  • Komatsuda T, Lee W and Oka S (1992) Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeans Glycine gracilis Skvortz and G. max (L.) Merrill. Plant Cell Tiss. Org. Cult., 28: 103–113.

    Article  CAS  Google Scholar 

  • Krishnamurthy K V Godbole D A and Mascarenhas A F (1984) Studies on drought resistant legume: the moth-bean, Vigna aconitifolia (Jacq.) Marechal. I. Protoplast culture and organogenesis. Plant Cell Rep., 3: 30–32.

    Article  Google Scholar 

  • Krishnamurthy K V Godbole D A and Mascarenhas A F (1986) Scanning electron microscope analysis of organogenetic and non-organogenetic callus tissue of the mothbean, Vigna aconitifolia (Jacq.) Marechal: A comparative study. Indian J. Exp. Biol., 24: 408–413.

    Google Scholar 

  • Krishnamurthy K V Suhasini K, Sagare A P, Meixner M, de Kathen A, Pickardt T and Schieder 0 (2000) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep., 19: 235–240.

    Google Scholar 

  • Kriz A L and Larkins B A (1991) Biotechnology of seed crops: genetic engineering of seed storage proteins. Hort. Sci., 26: 1036–1041.

    CAS  Google Scholar 

  • Kulkarni D D and Krishnamurthy K V (1989) Isolation and culture of protoplasts of pigeonpea, Cajanus cajan (L.) Millsp. Indian J. Exp. Biol., 27: 939–942.

    Google Scholar 

  • Kulothungan S, Ganapathi A, Shajahan A and Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp). Israel J. Plant Sci., 43: 385–390.

    Google Scholar 

  • Kumar A S, Gamborg 0 L and Nabors M W (1988a) Plant regeneration from cell suspension cultures of Vigna aconitifolia. Plant Cell Rep., 7: 138–141.

    Article  CAS  Google Scholar 

  • Kumar A S, Gamborg 0 L and Nabors M W (1988b) Regeneration from long-term cell suspension cultures of tepary bean (Phaseolus acutifolius). Plant Cell Rep., 7: 322–325.

    Article  CAS  Google Scholar 

  • Kumar A S, Reddy T P and Reddy G M (1983) Plantlet regeneration from different callus cultures of pigeonpea (Cajanus cajan L.). Plant Sci. Lett., 32: 271–278.

    Article  CAS  Google Scholar 

  • Kumar A S, Reddy T P and Reddy G M (1984) Multiple shoots from cultured explants of pigeonpea and Atylosia species. SABRAOJ.., 16: 101–105.

    Google Scholar 

  • Kumar P A, Bisaria S, Pai R A and Sharma R P (1995) Comparative shoot regeneration in different genotypes of chickpea, Cicer arietinum L. Indian J Exp. Biol., 33: 77–78.

    Google Scholar 

  • Kumar P S (1985) Crossability genome relationships and inheritance studies in intergeneric hybrids of pigeonpea. Ph.D. thesis, University of Hyderabad, India.

    Google Scholar 

  • Kysely W and Jacobsen H J (1990) Somatic embryogenesis from pea embryos and shoot apices. Plant Cell. Tiss. Org. Cult., 20: 7–14.

    Article  CAS  Google Scholar 

  • Kysely W, Myers J R, Lazzeri P A, Collins G B and Jacobsen H J (1987) Plant regeneration via somatic embryo-genesis in pea (Pisum sativum L.). Plant Cell Rep., 6: 305–308.

    Article  CAS  Google Scholar 

  • Lacorte C, Aragâo F J L, Almeida E R, Mansur E and Rech E L (1997) Transient expression of Gus and the 2S albumin gene from Brazil nut in peanut (Arachis hypogaea L.) seed explants using particle bombardment. Plant Cell Rep., 16: 619–623.

    Article  CAS  Google Scholar 

  • Lacorte C, Mansur E, Timmerman B and Cordeiro AR (1991) Gene transfer into peanut (Arachis hypogaea L.) by Agrabacterium tumefaciens. Plant Cell Rep., 10: 354–357.

    CAS  Google Scholar 

  • Larkin P J and Scowcroft W R (1981) Somaclonal variation — a novel source of variability from cell culture for plant improvement. Theort. Appl. Genet., 60: 197–204.

    Article  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B (1985) A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep., 3: 160–167.

    Article  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B (1987a) Soybean somatic embryogenesis: Effects of hormones and culture manipulations. Plant Cell Tiss. Org. Cult., 10: 197–208.

    Article  CAS  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B A (1987b) Soybean somatic embryogenesis: Effects of hormones and culture manipulations. Plant Cell Tiss. Org. Cult., 10: 209–220.

    Article  CAS  Google Scholar 

  • Lehminger-Mertens R and Jacobsen H-J (1989) Plant regeneration from pea protoplasts via somatic embryogenesis. Plant Cell Rep., 8: 379–382.

    Article  Google Scholar 

  • Lewis M E and Bliss F A (1994) Tumour formation and beta-glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens. J Am. Soc. Hort. Sci., 119: 361–366.

    CAS  Google Scholar 

  • Li B J, Langridge W H R and Szalay A A (1985) Somatic embryogenesis and plantlet regeneration in the soybean, Glycine max. Plant Cell Rep., 4: 344–347.

    Article  CAS  Google Scholar 

  • Li J and Grabau A (1996) Comparison of somatic embryogenesis and embryo conversion in commercial soybean cultivars. Plant Cell Tiss. Org. Cult., 44: 87–89.

    Article  Google Scholar 

  • Li X B, Xu Z H and Wei Z M (1995a) Plant regeneration from protoplasts of immature Vigna sinensis cotyledons via somatic embryogenesis. Plant Cell Rep., 15: 282–286.

    CAS  Google Scholar 

  • Li Z, Jarret, R L and Demski J W (1995b) Regeneration of plants from protoplasts of Arachis species. In: Biotechnology in Agriculture and Forestry, Vol. 34 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 3–13.

    Google Scholar 

  • Li Z, Robert L, Jarret L, Pittman R N and Demski J W (1994) Shoot organogenesis from cultured seed explants of peanut (Arachis hypogaea L.) using thidiazuron. In Vitro Cell. Dev. Biol. Plant, 30: 187–191.

    Google Scholar 

  • Lin W (1983) Isolation of mesophyll protoplasts from mature leaves of soybean. Plant Physiol., 73: 1067–1069.

    Article  PubMed  CAS  Google Scholar 

  • Lippmann B and Lippmann G (1984) Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L. Merrill Plant Cell Rep., 3: 215–218.

    Article  CAS  Google Scholar 

  • Lippmann B and Lippmann G (1993) Soybean embryo culture: factors influencing plant recovery from isolated embryos. Plant Cell Tiss. Org. Cult., 32: 83–90.

    Article  CAS  Google Scholar 

  • Liu W, Moore P J and Collins G B (1992) Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell. Dev. Biol. Plant, 28: 153–160.

    Google Scholar 

  • Liu W N, Torisky R S, McAllister K P, Avdiushko S, Hildebrandt D and Collins G B (1996) Somatic embryo cycling: Evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Tiss. Org. Cult., 47: 33–42.

    Article  CAS  Google Scholar 

  • Livingstone D M and Birch R G (1999) Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds. Mol. Breed., 5: 43–51.

    Article  Google Scholar 

  • Loiseau J, Marche C and Le Deunff Y (1995) Effects of auxins, cytokinins, carbohydrates and aminoacids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tiss. Org. Cult., 41: 267–275.

    Article  CAS  Google Scholar 

  • Loiseau J, Marche C and Le Deunff Y (1996) Variability of somatic embryogenic ability in the genus Pisum L.: Effects of genotype, explant source and culture medium. Agronomie, 16: 299–308.

    Article  Google Scholar 

  • Loiseau J, Michaux-Ferriere N and Le Deunff Y (1998) Histology of somatic embryogenesis in pea. Plant Physiol. Biochem., 36: 683–687.

    Article  CAS  Google Scholar 

  • Ma H, McMullen M D and Finer J J (1994) Identification of a homeobox-containing gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol. Biol., 24: 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Madsen M H, Nauerby B, Frederiksen C G and Wyndaele R (1998) Regeneration of pea (Pisum sativum L.) by the thin cell layer nodal system: Influence of explant culture media on rooting and plantlet formation. Acta. Agric. Scand., 48: 58–64.

    Article  Google Scholar 

  • Malik K A and Saxena P K (1992a) Regeneration in Phaseolus vulgaris L: High frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron. Planta, 186: 384–389.

    Article  CAS  Google Scholar 

  • Malik K A and Saxena P K (1992b) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius A., P. aureus (L.) Wilczek, P. coccineus L., and P. wrightii L. Plant Cell Rep., 11: 163–168.

    Article  CAS  Google Scholar 

  • Malik K A and Saxena P K (1992c) Thidiazuron induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol., 19: 731–740.

    Article  CAS  Google Scholar 

  • Malik K A, Alikhan S T and Saxena P K (1993) High-frequency organogenesis from direct seed culture in Lathyrus. Ann. Bot., 72: 629–637.

    Article  CAS  Google Scholar 

  • Malmberg R L (1979) Regeneration of whole plants from callus cultures of diverse genetic lines of Pisum sativum L. Planta, 146: 243–244.

    Article  Google Scholar 

  • Mansur E, Lacorte C, de Freitas V G, de Oliveira D E, Timmerman B and Cordeiro A R (1993) Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci., 89: 93–99.

    Article  Google Scholar 

  • Marioti D, Fontana G S and Santini L (1989) Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. J. Genet. Breed., 43: 77–82.

    Google Scholar 

  • Martin I S and Sondahl M R (1984) Early stages of somatic embryo differentiation from callus cells of bean (Phaseolus vulgaris L.) growth in liquid medium. J. Plant Physiol., 117: 97–103.

    Article  Google Scholar 

  • Martin J P and Rabechault H (1976) The culture in vitro of groundnut stamens (Arachis hypogaea L.). — II.

    Google Scholar 

  • Establishment of tissue cultures and organogenesis (in Fr., summary in Eng.). Oleagineux,31: 19–25.

    Google Scholar 

  • Maughan P J, Philip R, Cho M J, Widholm J M and Vodkin L O (1999) Biolistic transformation, expression, and inheritance of bovine beta-casein in soybean (Glycine max). In Vitro Cell. Dey. Biol. Plant, 35: 344–349.

    Google Scholar 

  • McClean P and Grafton K F (1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci., 60: 117–122.

    Article  Google Scholar 

  • McKently A H (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell. Dev. Biol. Plant, 27: 197–200.

    Google Scholar 

  • McKently A H (1995) Effect of genotype on somatic embryogenesis of axes of mature peanut embryos. Plant Cell Tiss. Org. Cult., 42: 251–254.

    Article  Google Scholar 

  • McKently A H, Moore G A and Gardener F P (1990) In vitro plant regeneration of peanut. Crop Sci., 30: 192–196.

    Google Scholar 

  • McKently A H, Moore G A and Gardener F P (1991) Regeneration of peanut and perennial peanut from cultured leaf tissue. Crop Sci., 31: 833–837.

    Article  Google Scholar 

  • McKently A H, Moore G A, Doostar H and Niedz R P (1995) Agrobacterium mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep., 14: 699–703.

    Google Scholar 

  • Mehta U and Mohan Ram H Y (1980) Regeneration of plantlet from cotyledons of Cajanus cajan L. Indian J Exp. Biot, 18: 800–802.

    Google Scholar 

  • Mhaske V B and Hazra S (1994) Appearance of storage lipid (triglycerides) in somatic embryos of peanut (Arachis hypogaea L.). In Vitro Cell. Dev. Biol. Plant, 30: 113–116.

    Google Scholar 

  • Mhatre M, Bapat V A and Rao P S (1985) Micropropagation and protoplast culture in peanut (Arachis hypogaea L.). Curr. Sci., 54: 1052–1056.

    Google Scholar 

  • Miyake H N and Taniguchi T (1994) An efficient method for callus formation of protoplasts from peanut (Arachis hypogaea L.) leaf mesophyll. Jpn. J. Crop Sci., 63: 362–367.

    Article  Google Scholar 

  • Mohan M L and Krishnamurthy K V (1998) Plant regeneration in pigeonpea (Cajanus cajan (L.) Millsp.) by organogenesis. Plant Cell Rep., 17: 705–710.

    Article  CAS  Google Scholar 

  • Mohan M L and Krishnamurthy K V (2001) Somatic embryogenesis and Plant regeneration in pigeonpea (Cajanus cajan (L.) Millsp.). Biol. Plant. (in press).

    Google Scholar 

  • Mohan M L, Naidu R B, Kulkarni D D and Krishnamurthy K V (1997) Regeneration of plantlets in pigeonpea (Cajanus cajan (L.) Millsp.) by organogenesis. In: Recent Advances in Biotechnological Applications of Plant Tissue and Cell Culture (Eds Ravishankar G A and Venkataraman L A ), Oxford and IBH Publishing Co. Pvt Ltd, New Delhi, pp. 151–155.

    Google Scholar 

  • Mohan Ram H Y, Mehta U and Ramanuja Rao I V (1981) Tissue and protoplast culture and plant regeneration in legumes. In: Proc. COSTED Symposium on Tissue Culture of Economically Important Plants (Ed Rao A N ), Singapore, pp. 66–69.

    Google Scholar 

  • Mohan Ram H Y, Mehta U and Ramanuja Rao I V (1982) Haploid induction in legumes. In: Plant Tissue Culture 1982 (Ed Fujiwara A ). Japan Association of Plant Tissue Culture, Tokyo, pp. 541–542.

    Google Scholar 

  • Mohapatra S T and Sharma R P (1991) Agrobacterium mediated genetic transformation of chickpea, Cicerarietinum L. Plant Cell Tiss. Org. Cult., 28: 45–51.

    Google Scholar 

  • Monnier M (1990) Culture of zygotic embryos of higher plants. In: Methods in Molecular Biology, Vol. 6, Plant Cell and Tissue Culture (Eds Pollard J W and Walker J M ), The Humana Press Clifton, New Jersey, pp. 129–139.

    Chapter  Google Scholar 

  • Morris J B, Dunn S, Pinnow D L, Hopkins M S and Pittman R N (1997) Meristem culture for virus elimination and peanut interspecific hybrid preservation. Crop Sci., 37: 591–594.

    Article  Google Scholar 

  • Mroginski L A and Fernandez A (1980) Obtained plantlets by in vitro culture of anthers of wild species of Arachis (Leguminosae) (in Sp., summary in Eng.). Oleagineux, 35: 89–92.

    Google Scholar 

  • Mroginski L A and Kartha K K (1981) Regeneration of pea (Pisum sativum L. cv. Century) plants by in vitro culture of immature leaflets. Plant Cell Rep., 1: 64–66.

    Article  Google Scholar 

  • Mroginski L A, Kartha K K and Shyluk J P (1981) Regeneration of peanut (Arachis hypogaea) plantlets by in vitro culture of immature leaves. Can..1 Bot., 59: 826–830.

    Article  CAS  Google Scholar 

  • Muehlbauer F J (1993) Use of wild species as a source of resistance in cool-season food legume crops. In: Breeding fir Stress Tolerance in Cool-season Food Legumes (Eds Singh K B and Saxena M C ), ICARDA, Wiley-Sayce Co Publications, pp. 359–372.

    Google Scholar 

  • Mulin M and BellioSpataru A (2000) Organogenesis from hypocotyl thin cell layers of Lupinus albus. Plant Growth Reg., 30: 177–183.

    Article  CAS  Google Scholar 

  • Murch S J Victor J M R, Krishnaraj S and Saxena P K (1999) The role of prolinc in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cell. Dev. Biol. Plant,35:102–105.

    Google Scholar 

  • Murthy B N S, Murch S J and Saxena P K (1995) Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): Endogenous growth regulator levels and significance of cotyledons. Physiol. Plant., 94: 268–276.

    Google Scholar 

  • Murthy B N S, Victor J, Singh R P, Fletcher R A and Saxena P K (1996) In vitro regeneration of chickpea (Cicer arietinum L.): Stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Reg., 19: 233–240.

    CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K and Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumetaciens. Plant Cell Rep., 15: 980–985.

    CAS  Google Scholar 

  • Myers J R, Lazzeri P A and Collins G B (1989) Plant regeneration of wild Glycine species from suspension culture-derived protoplasts. Plant Cell Rep., 8: 112–115.

    Article  Google Scholar 

  • Naidu R B, Kulkarni D D and Krishnamurthy K V (1995) Genotype dependent morphogenetic potentiality of various explants of a food legume, the pigeon pea (Cajanus cajan L.). In Vitro Cell. Dev. Biol. Plant, 31: 26–30.

    Google Scholar 

  • Nalini Mallikarjuna (1999) Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica, 110: 1–6.

    Article  Google Scholar 

  • Nalini Mallikarjuna and Moss J P (1995) Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica,83: 43–46.

    Google Scholar 

  • Nalini Mallikarjuna, Reena M J T, Sastri D C and Moss J P (1996) Somatic embryogenesis in pigeonpea (Cajanus cajan L.). Indian J Exp. Biol., 34: 282–284.

    Google Scholar 

  • Narasimhulu S B and Reddy G M (1983) Plant regeneration from different callus cultures of Arachis hypogaea. Plant Sci. Lett., 31: 157–163.

    Article  CAS  Google Scholar 

  • Narasimhulu S B and Reddy G M (1984) In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea L.). Theort. Appl. Genet., 69: 87–91.

    Google Scholar 

  • Narciso J O, Futsuhara Y, Hattori K and Wada T (1997) Effect of seed preconditioning and culture under different light intensities on callus induction and regeneration in excised cotyledon cultures of mungbean (Vigna radiata (L.) Wliczek). Jpn. J Crop Sci., 66: 67–75.

    Article  CAS  Google Scholar 

  • Narciso J O, Hattori K and Wada T (1996) Histological observation of callus formation in mungbean (Vigna vulgaris L. cv. Goldstar). Jpn. J. Crop Sci.,65: 663–671.

    Google Scholar 

  • Nataraja K and Patil S (1987) In: Plant Cell and Tissue Culture of Economically Important Plants (Ed G M Reddy), Osmania University, Hyderabad, 214–215.

    Google Scholar 

  • Nauerby B, Madsen M, Chrystiansen J and Wyndaele R (1991) A rapid and efficient regeneration system for pea (Pisum sativum), suitable for transformation. Plant Cell Rep., 9: 676–679.

    Article  Google Scholar 

  • Nene Y L, Moss J P and Gowda C L L (1989) Problems and prospects for grain legume breeding. In: The Role of Tissue Culture and Novel Genetic Technologies in Crop Improvement (Eds Ketchum J L F and Gamborg O L ), Proc. of the Third Conference of the International Plant Biotechnology Network (IPBNET), Nairobi, Kenya, TCCP, Colorado, 18–24.

    Google Scholar 

  • Newell C A and Luu H T (1985) Protoplast culture and plant regeneration in Glycine max. Plant Cell Tiss. Org. Cult., 4: 145–149.

    Article  Google Scholar 

  • Nicolaisen M and Poulsen G B (1993) Optimization of polyethylene glycol mediated transient gene expression in pea protoplasts. Plant Cell Tiss. Org. Cult., 35: 93–97.

    Article  CAS  Google Scholar 

  • Nicoll S M, Brigham L A, Wen F and Hawes M C (1995) Expression of transferred genes during hairy root development in pea. Plant Cell Tiss. Org. Cult., 42: 57–66.

    Google Scholar 

  • Norton F, Bliss F A and Bressani R (1985) Biochemical and nutritional attributes of grain legumes. In: Grain Legume Crops (Eds Summerfield R J and Roberts C H ), Kluwer Academic Pub. Dordrecht, The Netherlands, pp. 73–114.

    Google Scholar 

  • Oelck M M and Schieder 0 (1983) Genotype differences in some legume species affecting the redifferentiation ability from callus to plants. Z. P(lanzenzuchtg., 91: 312–321.

    Google Scholar 

  • Oelck M M, Bapat V A and Schieder O (1982) Protoplast culture of three legumes: Arachis hypogaea, Melilotus officinalis, Trifolium resupinatum. Z. Pflanzenphysiol., 106: 173–177.

    Google Scholar 

  • Oswald T H, Smith A E and Phillips D V (1977) Callus and plantlet regeneration from cell cultures of ladino clover and soybean. Physiol. Plant., 39: 129–134.

    Article  CAS  Google Scholar 

  • Owens L D and Cress D E (1985) Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol., 77: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Owens L D and Smigocki C (1988) Transformation of soybean cells using mixed strains of Agrobacterium tumefaciens and phenolic compounds. Plant Physiol., 88: 570–573.

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P (1989) Plant regeneration from immature embryos of peanut. Plant Cell Rep., 8: 217–218.

    Article  Google Scholar 

  • Ozias-Akins P, Anderson W F and Holbrook C C (1992a) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci., 83: 103–111.

    Google Scholar 

  • Ozias-Akins P, Schnall J A, Anderson W F, Singsit C, Clemente T E, Adang M J and Weissinger A K (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci., 93: 185–194.

    Google Scholar 

  • Ozias-Akins P, Singsit C and Branch W D (1992b) Interspecific hybrid inviability in crosses of Arachis hypogaea X A. stenosperma can be overcome by in vitro embryo maturation or somatic embryogenesis. J Plant Physiol., 140: 207–212.

    Article  CAS  Google Scholar 

  • Pal M, Ghosh U, Chandra M, Pal A and Biswas B B (1991) Transformation and regeneration of mung bean (Vigna radiata). Indian J Biochem. Biophys., 28: 449–455.

    PubMed  CAS  Google Scholar 

  • Pandey P and Bansal Y K (1989) Plantlet formation and callus cultures of cowpea (Vigna sinensis L.). Curr. Sci., 58: 394–396.

    CAS  Google Scholar 

  • Parrott W A, Bailey M A, Durham R E and Mathews H V (1992) Tissue culture and regeneration in legumes. In: Biotechnology and Crop Improvement in Asia (Ed Moss J P ), ICRISAT, Patancheru, India, pp. 115–148.

    Google Scholar 

  • Parrott W A, Hoffman L M, Hildebrandt D F, Williams E G and Collins G B (1989) Recovery of primary transformants of soybean. Plant Cell Rep., 7: 615–617.

    CAS  Google Scholar 

  • Patel D B, Barye D M, Nagar N and Mehta A R (1992) Regeneration of pigeonpea, Cajanus cajan through somatic embryogenesis. Indian J. Exp. Biol., 30: 871–873.

    Google Scholar 

  • Patel D B, Barye D M, Nagar N and Mehta A R (1994) Regeneration of pigeonpea Cajanus cajan, through somatic embryogenesis. Indian J. Exp. Biol., 32: 740–744.

    CAS  Google Scholar 

  • Pellegrineschi A (1997) In vitro plant regeneration via organogenesis of cowpea (Vigna unguiculata (L.) Walp). Plant Cell Rep., 17: 89–95.

    CAS  Google Scholar 

  • Penza R, Lurquin P F and Filippone E (1991) Gene transfer by co-cultivation of mature embryos with Agrobacterium tumefaciens: Application to cowpea (igna unguiculata (L.) Walp). J. Plant Physio1., 138: 39–43.

    Article  CAS  Google Scholar 

  • Pestana M C, Lacorte C, deFreitas V G, deOliveira D E and Mansur E (1999) In vitro regeneration of peanut (Arachis hypogaea L.) through organogenesis: Effect of culture temperature and silver nitrate. In Vitro Cell. Dev. Biol. Plant, 35: 214–216.

    Google Scholar 

  • Pickardt T, Huancaruna Perales E and Schieder O (1989) Plant regeneration via somatic embryogenesis in Vicia narbonensis. Protoplasma, 149: 5–10.

    Article  Google Scholar 

  • Pickardt T, Meixner M, Schade V and Schieder 0 (1991) Transformation of Vicia narbonensis via Agrobacterium-mediated gene transfer. Plant Cell Rep., 9: 535–538.

    Article  CAS  Google Scholar 

  • Pickardt T, Saalbach I, Waddell D, Meixner M, Mintz K and Schieder O (1995) Seed specific expression of the 2S albumin gene from Brazil nut (Bertholletia excelsa) in transgenic Vicia narbonensis. Mol. Breed., 1: 295–301.

    Article  CAS  Google Scholar 

  • Pigeaire A, Abernethy D, Smith P M, Simpson K, Fletcher N, Lu C Y, Adkins C A and Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol. Breed., 3: 341–349.

    Article  CAS  Google Scholar 

  • Pittman R N, Banks D J, Kirby J S, Mitchell E D and Richardson P E (1983) In vitro culture of immature peanut (Arachis spp.) leaves: Morphogenesis and plantlet regeneration. Peanut Sci., 10: 21–25.

    Google Scholar 

  • Polanco M C and Ruiz M L (1997) Effect of benzylaminopurine on in vitro and in vivo root development in lentil, Lens culinaris Medik. Plant Cell Rep., 17: 22–26.

    Article  Google Scholar 

  • Polanco M C, Pelaez M I and Riuz M L (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tiss. Org. Cult., 15: 175–182.

    Article  Google Scholar 

  • Polisetty R, Paul V, Deveshwar J J, Khetrapal, Suresh K and Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Rep., 16: 565–571.

    CAS  Google Scholar 

  • Ponappa T, Brzozowski A E and Finer J J (1999) Transient expresion and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep., 19: 6–12.

    Article  CAS  Google Scholar 

  • Ponsamuel J, Huhman D V, Cassidy B G and Post-Beittenmiller D (1998) In vitro regeneration via caulogenesis and brassin-induced shoot conversion of dormant buds from plumular explants of peanut (Arachis hypogaea L. cv. Okran). Plant Cell Rep., 17: 373–378.

    CAS  Google Scholar 

  • Popiers D, Flandre F and Sangwan-Norreel (1997) Intensification of pea regeneration (Pisum sativum L.) using thidiazuron via the formation of organogenic cauline structures. Can. J. Bot., 75: 492–500.

    Article  Google Scholar 

  • Puite K J (1992) Progress in plant protoplast research. Physiol. Plant., 85: 403–410.

    Article  Google Scholar 

  • Pundir R P S and Singh R B (1987) Possibility of genetic improvement of pigeonpea (Cajanus cajan (L.) Millsp.) utilizing wild genes sources. Euphytica, 36: 33–37.

    Article  Google Scholar 

  • Puonti-Kaerlas J (1993) Genetic engineering in pea crop improvement. Acta Agric. Scand., Sect B, Soil Plant Sci., 43: 65–73.

    CAS  Google Scholar 

  • Puonti-Kaerlas J and Eriksson T (1988) Improved protoplast culture and regeneration of shoots in pea (Pisum sativum L.). Plant Cell Rep., 7: 242–245.

    Article  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T and Engstrom P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theort. Appl. Genet., 80: 246–252.

    Google Scholar 

  • Puonti-Kaerlas J, Stabel P and Eriksson T (1989) Transformation of pea (Pisum sativum L.) by Agrobacterium tumefaciens. Plant Cell Rep., 8: 321–324.

    Article  Google Scholar 

  • Purseglove J W (1988) Tropical crops: Dicotyledons, Longman Group Ltd, ELBS edition, London. Radhakrishnan T, Murthy T G K, Desai S and Bandyopadhyay A (1999) Meristem culture of interspecific hybrids of groundnut. Biol. Plant., 42: 309–312.

    Google Scholar 

  • Rajasekaran K and Pellow J W (1997) Somatic embryogenesis from cultured epicotyls and primary leaves of soybean (Glycine max (L.) Merrill). In Vitro Cell. Dev. Biol., 33: 88–91.

    Google Scholar 

  • Ramana R V Venu C, Jayasree T and Sadanadam A (1996) Direct somatic embryogenesis and transformation in Cicer arietinum L. Indian J Exp. Biol., 34: 716–718.

    Google Scholar 

  • Ramana Rao V V, Chary S N and Bhall J K (1992) Somatic embryogenesis from mesophyll protoplasts of wild and cultivated species of pigeonpea. In: Biotechnology and Crop Improvement in Asia (Ed Moss J P ), ICRISAT, Patancheru, India, p. 161.

    Google Scholar 

  • Ranch J P (1993) The potential for synthetic soybean seed. In: Synseeds Applications of Synthetic Seeds to Crop Improvement (Ed Redenbaugh K ), CRS Press, Boca Raton/Ann Arbor/London/Tokyo, pp. 329–350.

    Google Scholar 

  • Ranch J P, Oglesby L O and Zielinski A C (1985) Plant regeneration from embryo-derived cultures of soybean. In Vitro Cell. Dev. Biol. Plant, 21: 653–658.

    Google Scholar 

  • Rao B G and Chopra V L (1987) Genotypic and explant differences in establishment of chickpea (Cicer arietinum L.) callus. In: Proc. Symp. Plant Cell and Tissue Culture of economically important plants (Ed Reddy G M ), Osmania University, Hyderabad, India.

    Google Scholar 

  • Rao B G and Chopra V L (1989) Regeneration in chickpea (Cicer arietinum L.) through somatic embryogenesis. J. Plant Physiol., 134: 637–638.

    Article  Google Scholar 

  • Rao J D and Reddy G M (1987) In Vitro morphogenesis and multiple shooting in Cicer arietinum L. In: Proc Symp Plant Cell and Tissue Culture of Economically Important Plants (Ed Reddy G M), Osmania University, Hyderabad, India.

    Google Scholar 

  • Reddy R L and Reddy G M (1993) Factors affecting direct somatic embryogenesis and plant regeneration in groundnut, Arachis hypogaea L. Indian J. Exp. Biol., 31: 57–60.

    Google Scholar 

  • Roeper W (1980) Callus formation from protoplasts derived from cell suspension cultures of Vicia faba L. Z. Pflanzenphysiol., 101: 75–78.

    Google Scholar 

  • Rohini V K and Rao K S (2000) Transformation of peanut (Archis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci., 150: 41–49.

    Article  CAS  Google Scholar 

  • Rubluo A, Kartha K K, Mroginski L A and Dyck J (1984) Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. J. Plant Physiol., 117: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Pickardt T, Machemehl F, Saalbach G, Schieder O and Müntz K (1994) A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Betrolletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol. Gen. Genet., 242: 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Waddell D, Pickardt T, Schieder O and Müntz K (1995) Stable expression of the sulphur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seeds. J Plant Physiol., 145: 674–681.

    Google Scholar 

  • Sabita Rani A and Reddy G M (1996) Induction of somatic embryogenesis from young leaflets of cultivated and wild species of groundnut. Indian J Exp. Biol., 34: 569–571.

    Google Scholar 

  • Sagare A P (1997) Tissue culture studies in grain legumes. Ph.D. thesis, University of Pune, India.

    Google Scholar 

  • Sagare A P and Krishnamurthy K V (1991) Protoplast regeneration in chickpea, Cicer arietinum L. Indian J Exp. Biol., 29: 930–932.

    Google Scholar 

  • Sagare A P, Suhasini K and Krishnamurthy K V (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 652–655.

    Article  Google Scholar 

  • Sagare A P, Suhasini K and Krishnamurthy K V (1995a) Histology of somatic embryo initiation and development in chickpea (Cicer arietinum L.). Plant Sci., 109: 87–93.

    Article  CAS  Google Scholar 

  • Sagare A P Suhasini K and Krishnamurthy K V (1995b) Recent trends in improvement of chickpea (Cicer arietinum L.) through biotechnological methods. In: Commemorative volume dedicated to ProfHYMohan Ram at the “National Seminar on Changing Scenario in Plant Sciences ”,Department of Botany, Banaras Hindu University, Varanasi, pp. 356–364.

    Google Scholar 

  • Saini R and Jaiwal P K (2002) Age, orientation and position of explant in mother seedling determines the morphogenic response of epicotyl in Vigna mungo (L.) Hepper. Plant Sci.,163: 139–144.

    Google Scholar 

  • Saker M M and Kuhne T (1998) Production of transgenic kidney bean shoots by electroporation of intact cells. Biol. Plant., 40: 507–514.

    Article  Google Scholar 

  • Samoylov V M, Tucker D M and Parrott W A (1998) Soybean (Glycine max (L.) Merrill) embryogenic cultures: The role of sucrose and total nitrogen content on proliferation. In Vitro Cell. Dey. Biol. Plant, 34: 8–13.

    Google Scholar 

  • Sanago M H M, Shattuck V 1 and Strommer J (1996) Rapid plant regeneration of pea using thidiazuron. Plant Cell Tiss. Org. Cult., 45: 165–168.

    Article  CAS  Google Scholar 

  • Sankhla A, Sankhla D, Upadhyaya A, Davis T D and Sankhla N (1990) Influence of lactidichlor-ethyl on growth, chemical composition, and regeneration of mothbean callus cultures. Comp Physiol Ecol., 15: 140–146.

    Google Scholar 

  • Sankhla N, Davis T D, Gehlot H S, Upadhyaya A, Sankhla A and Sankhla D (1991) Growth and organogenesis in mothbean callus cultures as influenced by triazole growth regulators and gibberellic acid. J Plant Growth Reg., 10: 41–45.

    Article  CAS  Google Scholar 

  • Santalla M, Power J B and Davey M R (1998) Efficient in vitro shoot regeneration responses of Phaseolus vulgaris and P. coccineus. Euphytica, 102: 195–202.

    Article  Google Scholar 

  • Santarem E R and Finer J J (1999) Transformation of soybean (Glycine max (L.) Merrill). In Vitro Cell. Dev. Biol. Plant, 35: 451–455.

    Google Scholar 

  • Santarem E R, Pelissier B and Finer J J (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell. Dev. Biol. Plant, 33: 13–19.

    Google Scholar 

  • Santarem E R, Trick H N, Essig J S and Finer J J (1998) Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep., 17: 752–759.

    Article  CAS  Google Scholar 

  • Santos K G B, Mundstock E and Bodanese-Zanettini M H (1997) Genotype-specific normalization of soybean somatic embryogenesis through the use of an ethylene inhibitor. Plant Cell Rep., 16: 859–864.

    Article  CAS  Google Scholar 

  • Sarangi B K and Gleba Y Y (1991) Direct multiple regeneration in Cajanus cajan (L.) Millsp. Acta Hort., 289: 149–150.

    Google Scholar 

  • Sarangi B K, Kuchuk N and Gleba Y Y (1992) Isolation and culture of protoplasts of pigeonpea (Cajanus cajan L.). Plant Cell Rep., 11: 462–465.

    Article  Google Scholar 

  • Sarker R H Chowdhury A P and Hogue M I (1997) Preliminary studies on Agrobacterium-mediated genetic transformation of peanut (Arachis hypogaea L.). Bangladesh J. Bot.,26: 155–162.

    Google Scholar 

  • Sastri D C, Nalini M S and Moss J P (1982) Peanut. In: Tissue Culture of Economically Important Plants (Ed Rao A N ), Costed and Anbs, Singapore, pp. 42–57.

    Google Scholar 

  • Sato S, Newell C, Kolacz K, Tredo L, Finer JJ and Hinchee M (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep., 12: 408–413.

    CAS  Google Scholar 

  • Saxena P K, Malik K A and Gill R (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta, 187: 421–424.

    Article  CAS  Google Scholar 

  • Schaerer S and Pilet P E (1991) Roots, explants and protoplasts from pea transformed with strains. Plant Sci., 78: 247–258.

    Article  Google Scholar 

  • Schnall J A and Weissinger A K (1993) Culturing peanut (Arachis hypogaea L.) zygotic embryos for transformation via microprojectile bombardment. Plant Cell Rep., 12: 316–319.

    Article  Google Scholar 

  • Schnall J A and Weissinger A K (1995) Genetic transformation in Arachis hypogaea L. (peanut). In: Biotechnology in Agriculture and Forestry, Vol. 34 (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 135–144.

    Google Scholar 

  • Schroeder H E, Schotz A H, Wardley-Richardson T, Spencer D and Higgins T J V (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol., 101: 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Schulz A L Adkins S W, Godwin I D and Dodd W A (1993) Focussed plant improvement (Towards responsible and sustainable agriculture). In: Proc. 10th Australian Plant Breeding Conference,Gold Coast, Australia, 187–188.

    Google Scholar 

  • Schwenk F W, Pearson C A and Roth M R (1981) Soybean mesophyll protoplasts. Plant Sci Lett., 23: 153–155.

    Article  CAS  Google Scholar 

  • Seitz M H, Stalker H T and Green C (1987) Genetic variation for regenerative response in immature leaflet cultures of the cultivated peanut, Arachis hypogaea. Plant Breed., 98: 104–110.

    Google Scholar 

  • Sellars R M, Southward G M and Phillips G C (1990) Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut using soybean as a model system. Crop Sci., 30: 408–414.

    Article  CAS  Google Scholar 

  • Sen J and Guha Mukherjee S (1998) In vitro induction of multiple shoots and plant regeneration in Vigna. In Vitro Cell. Dev. Biol. Plant,34:276–280.

    Google Scholar 

  • Shama Rao H K and Narayanaswamy S (1975) Effect of gamma irradiation on cell proliferation and regeneration in explanted tissues of pigeon pea, Cajanus cajan (L.) Millsp. Radiat. Bot., 15: 301–305.

    Article  Google Scholar 

  • Sharma D R, Kumari R and Chowdhury J B (1979) Plant regeneration in Cicer species through tissue culture. Indian J. Exp. Biol., 17: 607–609.

    Google Scholar 

  • Shekhawat N S and Galston A W (1983) Isolation, culture, and regeneration of mothbean Vigna aconitifblia leaf protoplasts. Plant Sci. Lett., 32: 43–51.

    Article  Google Scholar 

  • Shiva Prakash N, Pental D and Bhalla-Sarin N (1994) Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Rep., 13: 623–627.

    Article  CAS  Google Scholar 

  • Shri P V and Davis T M (1992) Zeatin-induced shoot regeneration from immature chickpea (Cicer arietinum L.) cotyledons. Plant Cell Tiss. Org. Cult., 28: 45–51.

    Article  CAS  Google Scholar 

  • Shyluk J P, Kartha K K and Mroginski L A (1981) Plant regeneration from meristems of grain legume cowpea, chickpea, peanut. Can. J Bot., 59: 1671–1679.

    Article  Google Scholar 

  • Simonenko Y V, Gleba Y Y and Kuchuk N V (1999) Double transformation: Producing transgenic phosphinothricin-resistant plants of commercial pea lines. Russ. J. Plant Physiol., 46: 804–807.

    CAS  Google Scholar 

  • Soh W Y, Choi P S and Cho DY (1998) Effects of cytokinin on adventitious root formation in callus cultures of Vigna unguiculata (L.) Walp. In Vitro Cell. Dev. Biol. Plant, 34: 189–195.

    Google Scholar 

  • Sreenivasan E, Pathak S S and Joshi R N (1995) Deproteinized leaf juice — a novel medium for rhizogenesis in vitro. Curr. Sci., 68: 586.

    Google Scholar 

  • Sreenivasu K, Malik S K, Ananda Kumar P and Sharma R P (1998) Plant regeneration via somatic embryogenesis in pigeonpea (Cajanus cajan (L.) Millsp.). Plant Cell Rep., 17: 294–297.

    Article  CAS  Google Scholar 

  • Srinivasan M, Mohapatra S T and Sharma R P (1991) Agrobacterium mediated genetic transformation of chickpea, Cicer arietinum L. Indian J Exp. Biol., 29: 758–761.

    CAS  Google Scholar 

  • Sroga G E (1987) Plant regeneration of two Lupinus spp. from callus cultures via organogenesis. Plant Sci., 51: 245–249.

    Article  Google Scholar 

  • Stejskal J and Griga M (1992) Somatic embryogenesis and plant regeneration in Pisum sativum L. Biol. Plant, 34: 15–22.

    Article  Google Scholar 

  • Stewart C N, Adang M J, All J N, Boerma H R, Cardineau G, Tucker D and Parrott W A (1996) Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol., 112: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Suhasini K, Sagare A P and Krishnamurthy K V (1994) Direct somatic embryogenesis from mature embryo axes in chickpea (Citer arietinum L.). Plant Sci., 102: 189–194.

    Article  CAS  Google Scholar 

  • Suhasini K, Sagare A P and Krishnamurthy K V (1996) Study of aberrant morphologies and lack of conversion of somatic embryos of chick pea (Cicer arietinum L.). In Vitro Cell. Dev. Biol. Plant, 32: 6–10.

    Google Scholar 

  • Suhasini K, Sagare A P, Sainkar S R and Krishnamurthy K V (1997) Comparative study of the development of zygotic and somatic embryos of chickpea (Cicer arietinum L.). Plant Sci., 128: 207–216.

    Article  CAS  Google Scholar 

  • Sun S S M and Larkins B A (1993) Transgenic plants for improving seed storage proteins. In: Transgenic Plants, Vol. 1 (Eds Shain-dow K and Wu R ), Academic Press Inc, New York, pp. 339–372.

    Google Scholar 

  • Surya-Prakash, Chowdhury J B, Jain R K and Chowdhury V K (1992) Factors affecting plant regeneration in chickpea, Cicer arietinum L. Indian J. Exp. Biol., 30: 1149–1153.

    Google Scholar 

  • Tegeder M, Gebhardt D, Schieder O and Pickardt T (1995) Thidiazuron-induced plant regeneration from protoplasts of Vicia faba cv. Mythos. Plant Cell Rep., 15: 164 169.

    Google Scholar 

  • Tegeder M, Koehn H, Nibbe M, Schieder O and Pickardt T (1996) Plant regeneration from protoplasts of Vicia narbonensis via somatic embryogensis and shoot organogenesis. Plant Cell Rep., 16: 22–25.

    Article  CAS  Google Scholar 

  • Tetu T, Sangwan R S and Sangwan-Norreell B S (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J. Plant Physiol., 137: 102–109.

    Article  Google Scholar 

  • Thome G C H, Santarem E R and Ferreira A G (1995) Adventitious bud induction and plant regeneration from soybean cotyledonary nodes. Phyton-Int. J. Exp. Bot., 57: 127–135.

    Google Scholar 

  • Thorpe T A (1988) In vitro somatic embryogenesis. In: ISI Atlas of Science, Animal and Plant Sciences,pp. 81–88.

    Google Scholar 

  • Trick HN and Finer J J (1998) Sonication assisted Agrobacterium-mediated transformation of soybean (Glycine max (L.) Merrill) embryogenic suspension culture tissue. Plant Cell Rep., 17: 482–488.

    Article  CAS  Google Scholar 

  • Tricoli D M, Hein M B and Carnes M G (1986) Culture of soybean mesophyll protoplasts in alginate beads. Plant Cell Rep., 5: 334–337.

    Article  Google Scholar 

  • Vani A K S and Reddy G M (1996) Morphogenesis from callus cultures of chickpea, Cicer arietinum L. Indian J. Exp. Biol., 34: 285–287.

    Google Scholar 

  • Venkatachalam P and Jayabalan N (1996) Efficient callus induction and plant regeneration via somatic embryogenesis from immature leaf-derived protoplasts of groundnut (Arachis hypogaea L.). Israel J. Plant Sci., 44: 387–396.

    Google Scholar 

  • Venkatachalam P and Jayabalan N (1997) Effect of auxins and cytokinins on efficient plant regeneration and multiple shoot formation from cotyledons and cotyledonary node explants of groundnut (Arachis hypogaea L.) by in vitro culture technology. Appl. Biochem. Biotech., 67: 237–247.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N and Jayabalan N (1998a) Induction of somatic embryos and plantlet development in cell suspension cultures of Arachis hypogaea L. Breed Sci., 48: 231–236.

    Google Scholar 

  • Venkatachalam P, Geetha N, Jayabalan N, Saravanababu and L Sita (1998b) Agrobacterium-mediated genetic transformation of groundnut (Arachis hypogaea L.): An assessment of factors affecting regeneration of transgenic plants. J. Plant Res., 111: 565–572.

    CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila M S and Sita G L (1999a) Induction of direct somatic embryogenesis and plant regeneration from mature cotyledon explants of Arachis hypogaea L. Cure. Sci., 77: 269–273.

    Google Scholar 

  • Venkatachalam P, Geetha N, Rao K S and Jayabalan N (1999b) Rapid and high-frequency in vitro plant regeneration from leaflet and petiole explants of groundnut (Arachis hypogaea L.). Appl. Biochem. Biotech., 80: 193–203.

    Article  CAS  Google Scholar 

  • Venkatachalam P, Kishor P B K, Geetha N, Thangavelu M and Jayabalan N (1999e) A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Arachis hypogaea L.). In Vitro Cell Dev. Biol. Plant, 35: 409–412.

    Google Scholar 

  • Venkatachalam P, Subrmaniampillai A and Jayabalan N (1996) In vitro callus culture and plant regeneration from different explants of groundnut (Arachis hypogaea L.). Breed. Sci., 46: 315–320.

    CAS  Google Scholar 

  • Venkatachalam, P, Kavi Kishor P B and Jayabalan N (1997) High frequency somatic embryogenesis and efficient plant regeneration from hypocotyl explants of groundnut (Arachis hypogaea L.). Cure. Sci., 72: 271–275.

    Google Scholar 

  • Victor J M R, Murch S J, Krishna Raj S and Saxena P K (1999a) Somatic embryogenesis and organogenesis in peanut: The role of thidiazuron and N6-benzylaminopurine in the induction of plant morphogenesis. Plant Growth Reg., 28: 9–15.

    Article  CAS  Google Scholar 

  • Victor J M R, Murthy B N S, Murch S J, Krishna Raj S and Saxena P K (1999b) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogaea L.). Plant Growth Reg., 28: 41–47.

    Article  CAS  Google Scholar 

  • von Arnold S and Eriksson T (1976) Factors affecting the growth and division of pea mesophyll protoplasts. Physiol. Plant., 36: 193–196.

    Article  Google Scholar 

  • Walden R (1989) Genetic Transformation of Plants. Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Wang A M, Fan H L, Singsit C and Ozias-Akins P (1998) Transformation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of Gus expression in primary transgenic tissues and plants. Physiol. Plant., 102: 38–48.

    Article  CAS  Google Scholar 

  • Warkentin T D and McHughen A (1992) Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Rep., 11: 274–278.

    CAS  Google Scholar 

  • Warkentin T D and McHughen A (1991) Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep., 10: 489–493.

    Google Scholar 

  • Wei Z (1988) Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep., 7: 348–351.

    Article  Google Scholar 

  • Wetzstein H Y and Baker C M (1993) The relationship between somatic embryo morphology and conversion in peanut Arachis hypogaea L. Plant Sci., 92: 81–89.

    Article  Google Scholar 

  • Widholm J M and Rick S (1983) Shoot regeneration from Glycine canescens tissue cultures. Plant Cell Rep., 2: 19–20.

    Google Scholar 

  • Wilson V M, Haq N and Evans P K (1985) Protoplast isolation, culture and plant regeneration by organogenesis in Glycine max. Plant Sci., 41: 61–68.

    Article  CAS  Google Scholar 

  • Wright M S, Koehler S M, Hinchee M A and Carnes M G (1986) Plant regeneration by organogenesis in Glycine max. Plant Cell Rep., 5: 150–154.

    Article  CAS  Google Scholar 

  • Wright M S, Ward D V, Hinchee M A, Carnes M G and Kaufman R J (1987) Regeneration of soybean (Glycine max (L.) Merrill) from cultured primary leaf tissue. Plant Cell Rep., 6: 83–89.

    CAS  Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D and Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep., 17: 693–699.

    Article  CAS  Google Scholar 

  • Yang Y S, Wada K and Futsuhara (1990) Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Sci., 72: 101–108.

    Article  Google Scholar 

  • Zambre M A, DeClerq J, Vranova E, VanMontagu M, Angenon G and Dillen W (1998) Plant regeneration from embryo derived callus Phaseolus vulgaris L. (common bean) and P. acutifolius A Gray (Tepary bean). Plant Cell Rep., 17: 626–630.

    Article  CAS  Google Scholar 

  • Zhang Z Y, Coyne D P and Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J. Am. Soc. Hort. Sci., 122: 300–305.

    CAS  Google Scholar 

  • Zhang Z Y, Xing A Q, Staswick P and Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss. Org. Cult., 56: 37–46.

    Article  CAS  Google Scholar 

  • Zhanyuan Z, Coyne D P and Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J. Am. Soc. Hort. Sci., 122: 300–305.

    Google Scholar 

  • Zharare G E, Blarney F P C and Asher C J (1998) Initiation and morphogenesis of groundnut (Arachis hypogaea L.) pods in solution culture. Ann. Bot., 81: 391–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mohan, M.L., Krishnamurthy, K.V. (2003). In Vitro Morphogenesis in Grain Legumes: An Overview. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics