Skip to main content

Organisation and Genetic Mapping of the Chickpea Genome

  • Chapter
Improvement Strategies of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

The improvement of important food legumes such as chickpea by modern biotechnology has been lagging behind achievements in e.g. model plants or cereals. However, substantial advancements have been made in many of these crops in recent years. Using chickpea as an e.g. this article summarises the progress made in our understanding of genome structure and evolution, genetic mapping, mapping of resistance genes for important pathogens, synteny between related species and genera, and plant transformation and regeneration. It is expected, that transfer of knowledge from model plants and advanced crops together with high-throughput technologies will catalyze the analysis of entire transcriptomes and proteomes which will foster the development also in the neglected crops and substantially add to their agricultural value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbo S, Miller T E, Reader S M, Dunford R P and King I P (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluoresence in situ hybridization. Genome, 37: 713–716.

    Article  PubMed  CAS  Google Scholar 

  • Acikgoz N, Karaca M, Er C and Meyveci K (1994) Chickpea and lentil production in Turkey. In: Expanding the Production and Use of Cool Season Food Legumes (Eds Muehlbauer F J, Kaiser W J ), Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ahmad F (1989) The chromosomal architecture of Cicer anatolicum Alef., a wild perennial relative of chickpea. Cytologia, 54: 753–757.

    Article  Google Scholar 

  • Ahmad F (1999) Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theort. Appl. Genet., 98: 657–663.

    Article  CAS  Google Scholar 

  • Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios, 101: 37–53.

    PubMed  CAS  Google Scholar 

  • Ahmad F and Hymowitz T (1993) The fine structure of chickpea (Cicer arietinum L.) chromosomes as revealed by pachytene analysis. Theort. Appl. Genet., 86: 637–641.

    Article  Google Scholar 

  • Ahmad F and Slinkard A E (1992) Genetic relationships in the genus Cicer L. as revealed by polyacrylamide gel electrophoresis of seed storage proteins. Theort. Appl. Genet., 84: 688–692.

    Google Scholar 

  • Ahmad F, Gaur P M and Slinkard A E (1992) Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L. Theort. Appl. Genet., 83: 620–627.

    Google Scholar 

  • Alfano J R and Collmer A (1996) Bacterial pathogens in plants: Life up against the wall. Plant Cell, 8: 1683–1698.

    PubMed  CAS  Google Scholar 

  • Ali S, Müller C R and Epplen J T (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum. Genet., 74: 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Arens P, Odinot P, Van Heusden A W, Lindhout P and Vosman B (1995) GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome, 38: 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T and Ganal M W (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42: 536–544.

    Article  PubMed  CAS  Google Scholar 

  • Auckland A K and van der Maesen L J G (1980) Chickpea. In: Hybridization of Crop Plants (Eds Fehr W R

    Google Scholar 

  • Hadley H H), American Society of Agronomy: Crop Science Society of America, pp. 249–259.

    Google Scholar 

  • Badami P S, Mallikarjuma N and Moss J P (1997) Interspecific hybridization between Cicer arietinum and Cicer pinnatifidum. Plant Breed., 116: 393–395.

    Article  Google Scholar 

  • Bahl P N (1987) Cytology of chickpea. In: The Chickpea (Eds Saxena M C and Singh K B ), CAB International, Wallingford, UK, pp. 83–98.

    Google Scholar 

  • Barna K S and Wakhlu A K (1993) Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 521–524.

    Article  CAS  Google Scholar 

  • Barna K S and Wakhlu A K (1994) Whole plant regeneration of Cicer arietinum from callus cultures via organogenesis. Plant Cell Rep., 13: 510–513.

    Article  CAS  Google Scholar 

  • Barz W, Bless W, Gunia W, Höhl B, Mackenbrock U, Meyer D, Tenhaken R and Vogelsang R (1993) Mechanism of resistance to fungal pathogens in cool-season food legumes. In: Breeding for Stress Tolerance in Cool-Season Food Legumes (Eds Singh K B and Saxena M C ), John Wiley and Sons, New York, pp. 193–210.

    Google Scholar 

  • Beckmann J S and Soller M (1990) Towards a unified approach to genetic mapping of eucaryotes based on sequenced tagged microsatellite sites. Bio/Technology, 8: 930–932.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M D and Smith J B (1976) Nuclear DNA amounts in angiosperms. Philos. Trans. Roy. Soc. London, B: 227–274.

    Google Scholar 

  • Bennett M D, Leitch I J and Leitch 1 J (1998) Angiosperm DNA C-value database: http://www.rbgkew.org.uk/cval/databasel.html

  • Bennetzen J L (2000) Comparative sequence analysis of plant nuclear genomes: Microlinearity and its many exceptions. Plant Cell, 12: 1021–1029.

    PubMed  CAS  Google Scholar 

  • Bonierbale M W, Plaisted R L and Tanksley S D (1988) RFLP maps based on a common set of clones reveal modes of chromosome evolution in potato and tomato. Genetics, 120: 1095–1103.

    PubMed  CAS  Google Scholar 

  • Brandes A, Heslop-Harrison J S, Kamm A, Kubis S, Doudrick R L and Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Tyl-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol., 33: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Broun P and Tanksley S D (1993) Characterization of tomato clones with sequence similarity to human mini-satellites 33.6 and 33.15. Plant Mol. Biol., 23: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Brous P and Tanksley S D (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol. Gen. Genet., 250: 39–49.

    Article  Google Scholar 

  • Burr B, Burr F A, Thompson K H, Albertsen M C and Stuber C W (1988) Gene mapping with recombinant inbreds in maize. Genetics, 118: 519–526.

    PubMed  CAS  Google Scholar 

  • Cabrera de la Colina J, Trapero-Casas A and Jiminéz-Diaz R M (1985) Races of Fusarium oxysporum fsp. ciceri in Andalucia, southern Spain. Int. Chickpea Newslett., 13: 24–26.

    Google Scholar 

  • Caetano-Anollés G and Gresshoff P M (1991) Plant genetic control of nodulation in legumes. Annu. Rev. Microbial., 45: 345–382.

    Article  Google Scholar 

  • Caetano-Anollés G, Bassam B J and Gresshoff P M (1991) DNA amplification fingerprinting: a strategy for genome analysis. Plant Mol. Biol. Rep., 9: 292–305.

    Article  Google Scholar 

  • Campbell C and Madden L V (1990) Temporal analysis of epidemics: Description and comparison of disease progress curves. In: Introduction to Plant Disease Epidemiology. John Wiley and Sons Inc, USA, pp. 161–202.

    Google Scholar 

  • Cavell A C, Lydiate D C, Parkin I A P, Dean C and Trick M (1998) Collinearity between a 30 centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 41: 62–69.

    PubMed  CAS  Google Scholar 

  • Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N and Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GeneBank sequences in rice (Oryza sativa L.). Theort. Appl. Genet., 100: 713–722.

    Article  CAS  Google Scholar 

  • Choumane W, Winter P, Weigand F and Kahl G (2000) Conservation and variability of sequence-tagged microsatellite sites from chickpea (Cicer arietinum L.) within the genus Cicer. Theort. Appl. Genet., 101: 269–278.

    Article  CAS  Google Scholar 

  • Christou P (1994) The biotechnology of crop legumes. Euphytica, 74: 165–185.

    Article  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, and VandenBosch K (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell, 7: 43–55.

    PubMed  CAS  Google Scholar 

  • Cook D, VandenBosch K, de Bruijn F and Huguet T (1997) Model legumes get the nod. Plant Cell, 9: 275–281.

    CAS  Google Scholar 

  • Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A 1, Kaya N, VanThoai T T, Lohnes D G, Chung J and Specht J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci., 39: 211–217.

    Article  Google Scholar 

  • Desikan R, Clarke A, Atherfold P, Hancock J T and Neill S J (1999) Harpin induces mitogen-activated protein kinase activity during defense responses in Arabidopsis thaliana suspension cultures. Planta, 210: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Dey S K and Singh G (1993) Resistance to Ascochyta blight-Genetic basis. Euphytica, 68: 147–153.

    Article  Google Scholar 

  • Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R and de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental trials in Pisum sativum L. Theort. Appl. Genet., 88: 17–27.

    CAS  Google Scholar 

  • Dixon R A and Lamb C J (1990) Molecular communication in interactions between plants and microbial infection in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 339–367.

    Article  CAS  Google Scholar 

  • Dombrovsky-Sludsky L (1927) La cinese somatique de Cicer arietinum. Zhurnal Russk Botaniki Obshch, 12: 163–171.

    Google Scholar 

  • Doyle J J, Morgante M, Tingey S V and Powell W (1998) Size homoplasy in chloroplast microsatellites of wild perennial relatives of soybean (Glycine subgenus Glycine). Mol. Biol. Evol., 15: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Duke J A (1981) Handbook of Legumes of World Economic Importance. Plenum Press, New York.

    Book  Google Scholar 

  • Eapen S and George L (1994) Somatic embryogenesis in Cicer arietinum L.: Influence of genotype and auxins. Biol. Plant., 36: 343–349.

    Article  Google Scholar 

  • Eser D (1976) Heritability of some important plant characters, their relationship with plant yield and inheritance of Ascochyta blight resistance in chickpea (Cicer arietinum L.), Ankara Universitesi, Ziraat Fakultesi Yayinlari 620, 40.

    Google Scholar 

  • Falquet J, Creusot F and Dron M (1997) Molecular analysis of rDNA unit and characterization of a satellite DNA homologous to 1GS subrepeats. Plant Physiol. Biochem., 35: 611–622.

    CAS  Google Scholar 

  • Flavell R B (1986) Repetitive DNA and chromosome evolution in plants. Philos. Trans. Roy. Soc. London, B 312: 227–242.

    Article  CAS  Google Scholar 

  • Fontana G S, Santini L, Caretto S, Frugis G and Mariotti D (1993) Genetic transformation in grain legume Cicer arietinum L. (chickpea). Plant Cell Rep., 12: 194–198.

    Article  CAS  Google Scholar 

  • Ford R, Pang E C K and Taylor P W J (1999) Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theort. Appl. Genet., 98: 93–98.

    Article  CAS  Google Scholar 

  • Galasso I and Pignone D (1992) Characterization of chickpea chromosomes by banding techniques. Genet. Res. Crop. Evol., 39: 115–119.

    Google Scholar 

  • Galasso I, Frediani M, Maggiani M, Cremonini R and Pignone D (1996) Chromatin characterization by banding techniques, in situ hybridization and nuclear DNA content in Cicer L. (Leguminosae). Genome, 39: 258–265.

    Article  PubMed  CAS  Google Scholar 

  • Gaur P M and Slinkard A E (1990a) Inheritance and linkage of isozyme coding genes in chickpea. J Hered., 81: 455–461.

    CAS  Google Scholar 

  • Gaur P M and Slinkard A E (1990b) Genetic control and linkage relations of additional isozyme markers in chickpea. Theort. Appl. Genet., 80: 648–656.

    CAS  Google Scholar 

  • Geiger H H and Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu. Rev. Phytopathol., 27: 318–341.

    Article  Google Scholar 

  • Gopalan S, Bauer D W, Alfano J R, Loniello A O, He S Y and Collmer A (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell, 8: 1095–1105.

    PubMed  CAS  Google Scholar 

  • Gortner G, Nenno M, Weising K, Zink D, Nagl W and Kahl G (1998) Chromosomal localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chrom. Res., 6: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Gowen S R (1983) Pathogenic variation in Ascochyta rabiei. Proc. 10th Intl. Cong. Plant Protection, Brighton, UK, The British Plant Protection Council, Croydon, UK, Vol. 2: 831.

    Google Scholar 

  • Grant D, Cregan P and Shoemaker R C (2000) Genome organization in dicots: Genome duplications in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA, 97: 4168–4173.

    Article  CAS  Google Scholar 

  • Gupta M, Chyi Y S, Romero-Severson J and Owen J L (1994) Amplification of DNA markers from evolutionary diverse genomes using single primers of simple sequence repeats. Theor. Appl. Genet., 89: 998–1006.

    Article  CAS  Google Scholar 

  • Gupta P K and Varshney R K (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113: 163–185.

    Article  CAS  Google Scholar 

  • Hafiz A and Ashraf M (1953) Studies on the inheritance of resistance to Mycosphaerella blight in gram. Phytophathology, 43: 580–581.

    Google Scholar 

  • Hammond-Kosack K E and Jones J J (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol Plant Mol. Biol., 48: 575–607.

    Article  PubMed  CAS  Google Scholar 

  • Handberg K and Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J, 2: 487–496.

    Article  Google Scholar 

  • Haware M P and Nene Y L (1982) Races of Fusarium oxysporum f.sp. ciceri. Plant Dis., 66: 809–810.

    Article  Google Scholar 

  • Heslop-Harrison J S, Brandes A, Taketa S, Schmidt T, Vershinin A V, Alkhimova E G, Kamm A, Doudrick R L, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce S R, Flavell A J and Harrison G E (1997) The chromosomal distribution of Tyl-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica, 100: 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Höhl B, Pfautsch M and Barz W (1990) Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J. Phytopathol., 129: 31–45.

    Article  Google Scholar 

  • Hutcheson S W (1998) Current concepts of active defense in plants. Annu. Rev. Phytopathol., 36: 59–90.

    Article  PubMed  CAS  Google Scholar 

  • Hüttel B (1996) Mikrosatelliten als molekulare Marker in der Kichererbse (Cicer arietinum L.), Ph.D. Thesis, University of Frankfurt, Germany.

    Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F and Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome, 42: 210–217.

    PubMed  Google Scholar 

  • Islam R, Malik T, Husnain T and Riazuddin S (1994) Strain and cultivar specificity in the Agrobacteriumchickpea interaction. Plant Cell Rep., 16: 32–37.

    Google Scholar 

  • Jiang Q and Gresshoff P M (1997) Classical and molecular genetics of the model legume Lotus japanicus. Mol. Plant Microbe Interact., 10: 559–568.

    Google Scholar 

  • Jiminéz-Diaz R M, Crino P, Halila M H, Masconi C and Trapero-Casas A T (1993) Screening for resistance to fusarium wilt and ascochyta blight in chickpea. In: Breeding for Stress Tolerance in Cool-Season Food Legumes (Eds Singh K B and Saxena M C ), John Wiley and Sons, New York, pp. 77–95.

    Google Scholar 

  • Kabir G and Singh R M (1990) Karyotype analysis of six species of Cicer L. Bangladesh J. Bot., 19: 175–181.

    Google Scholar 

  • Kaiser W J (1973) Factors affecting growth, sporulation, pathogenicity and survival of Ascochyta rabiei. Mycologia, 65: 444–457.

    Article  CAS  Google Scholar 

  • Kaiser W J (1992) Epidemiology of Ascochyta rabiei. In: Breeding for Stress Tolerance in Cool-Season Food Legumes (Eds Singh K B and Saxena M C ), John Wiley and Sons, New York, pp. 117–134.

    Google Scholar 

  • Kaiser W J (1997) Inter-and intranational spread of Ascochyta pathogens of chickpea, faba bean, and lentil. Can. J Plant Path., 19: 25–224.

    Article  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A and Schulman A (1999) TRAP and REMAP: two new retrotransposonbased DNA fingerprinting techniques. Theort. Appl. Genet., 98: 705–711.

    Google Scholar 

  • Kamm A, Galasso I, Schmidt T and Heslop-Harrison J S (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol. Biol., 27: 853–862.

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Johnson T M, Nayak P and Sen S K (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep., 16: 32–37.

    Google Scholar 

  • Kartha K K, Pahl K, Leung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes: Soybean, cowpea, groundnut, chickpea and bean. Can. J Bot., 59: 1674–1679.

    Article  Google Scholar 

  • Kashi Y, Nave A, Darvasi A, Gruenbaum Y, Soller M and Beckmann J S (1994) How is it that microsatellites and random oligonucleotides uncover DNA fingerprint patterns? Mamm. Genome, 5: 525–530.

    Google Scholar 

  • Kazan K and Muehlbauer F J (1989) Linkage of isozyme loci and morphological characters in chickpea. Am. Soc. Agron. Abst., Madison, WI, 89.

    Google Scholar 

  • Kazan K and Muehlbauer F J (1991) Allozyme variation and phylogeny in annual species of Cicer (Leguminosae). Plant Syst. Evol., 175: 11–21.

    Article  CAS  Google Scholar 

  • Kazan K, Muehlbauer F J, Weeden N F and Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theort. Appl. Genet., 86: 417–426.

    Article  CAS  Google Scholar 

  • Keller B and Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci., 5: 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Kovachevsky I C (1936) The blight of chickpea (Cicer arietinum) Mycosphaerella n.sp. (In Russian, English summary), Ministry of Agriculture and National Domains, Sofia, Bulgaria, p. 80.

    Google Scholar 

  • Krishnamurthy K V Suhasini K, Sagare A P, Meixner M, de Kathen A, Pickardt T and Schieder 0 (2000) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep., 19: 235–240.

    Google Scholar 

  • Ku H M, Vision T, Liu J P and Tanksley S D (2000) Comparing sequence segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA, 97: 9121–9126.

    Article  PubMed  CAS  Google Scholar 

  • Kumar J and Haware M P (1982) Inheritance of resistance to Fusarium wilt in chickpea. Phytopathology, 72: 1035–1036.

    Article  Google Scholar 

  • Kumar J and van Rheenen H A (2000) A major gene for time to flowering in chickpea. J Hered., 91: 67–68.

    Article  PubMed  CAS  Google Scholar 

  • Kumar P A, Bisaria S and Sharma R P (1995b) Comparative shoot regeneration in different genotypes of chickpea (Cicer arietinum L.). Indian J. Exp. Biol., 33: 77–78.

    Google Scholar 

  • Kumar J, Srivastava R K and Ganesh M (2000a) Penetrance and expressivity of the gene for double podding in chickpea. J. Hered., 91: 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Vijayalakshmi N V S and Rao T N (2000b) Inheritance of flower color in chickpea. J. Hered., 91: 416–417.

    Article  PubMed  CAS  Google Scholar 

  • Kumar V D, Kirti P B, Sachan J K S and Chopra V L (1994) Plant regeneration via somatic regeneration in chickpea (Cicer arietinum L.). Plant Cell Rep., 13: 468–472.

    Article  CAS  Google Scholar 

  • Kumar V D, Kirti P B, Sachan J K S and Chopra V L (1995a) Picloram induced somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Sci., 109: 207–213.

    Article  Google Scholar 

  • Kusmenoglu I (1990) Ascochyta blight of chickpea: Inheritance and relationship to seed size, morphological traits and isozyme variation. M.S. thesis, Washington State University, Pullman, WA, USA: 81.

    Google Scholar 

  • Labdi M, Robertson L D, Singh K B and Charrier A (1996) Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphisms. Euphytica, 88: 181–188.

    Article  CAS  Google Scholar 

  • Ladizinsky G and Adler A (1976a) The origin of chickpea (Cicer arietinum L.). Euphytica, 25: 211–217.

    Article  Google Scholar 

  • Ladizinsky G and Adler A (1976b) Genetic relationships among the annual species of Cicer L. Theort. Appl. Genet., 48: 197–203.

    Article  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 150: 1217–1228.

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Ellegren H and Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res., 21: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Lamb C J, Lawton M A, Drou M and Dixon R A (1989) Signals and transduction mechanism for activation of plant defences against microbial attack. Cell, 56: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Leister R T and Katagiri F (2000) A resistance gene product of the nucleotide–binding site–leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J., 22: 345–354.

    Article  CAS  Google Scholar 

  • Lev-Yadun S, Gopher A and Abbo S (2000) The cradle of agriculture. Science, 288: 1602–1603.

    Article  PubMed  CAS  Google Scholar 

  • Lister C and Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J, 4: 745–750.

    Article  CAS  Google Scholar 

  • Litt M and Luty J A (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J Hum. Genet., 44: 397–401.

    PubMed  CAS  Google Scholar 

  • Long S (1996) Rhizobium symbiosis: Nod factors in perspective. Plant Cell, 8: 1885–1898.

    CAS  Google Scholar 

  • Luan S (1998) Protein phosphatases and signaling cascades in higher plants. Trends Plant Sci., 3: 271–275.

    Article  Google Scholar 

  • Maggini F, Cremonini R, Zolfino C, Tucci G F, D’Ovidio R, Delre V, DePace C, Scarascia Mugnozza G T and Cionini P G (1991) Structure and chromosomal localization of DNA sequences related to ribosomal subrepeats in Vicia faba. Chromosoma, 100: 229–234.

    Article  CAS  Google Scholar 

  • Malik K A and Saxena P K (1992) Thidiazuron induces high-frequency shoot regeneration in intact seedling of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol., 19: 731–740.

    Article  CAS  Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu S E, Iaccarino M and Gresshoff P M (1999) T-DNA tagging of nodulation and root-related genes in Lotus japonicus. Expression patterns and potential for promotor-trapping and insertional mutagenesis. Mol. Plant Microbe Interact., 12: 275–284.

    Article  CAS  Google Scholar 

  • Mayer M S, Tullu A, Simon C J, Kumar J, Kaiser W J, Kraft J M and Muehlbauer F J (1997) Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci., 37: 1625–1629.

    Article  CAS  Google Scholar 

  • McMurray C T (1995) Mechanisms of DNA expansion. Chromosoma, 104: 2–13.

    PubMed  CAS  Google Scholar 

  • Mercy S T, Kakar S N and Chowdhury J B (1974) Cytological studies in three species of the genus Cicer. Cytologia, 39: 383–390.

    Google Scholar 

  • Meyer W, Mitchell T G, Freedman E Z and Vilgalys R (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol., 31: 2274–2280.

    CAS  Google Scholar 

  • Michelmore R W, Paran I and Kesseli R V (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Ichimura K and Shinozaki K (1997) Environmental stress response in plants: the role of mitogenactivated protein kinases. TIBTECH, 15: 15–19.

    Article  CAS  Google Scholar 

  • Moore G (2000) Cereal chromosome structure, evolution and painting. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51: 195–222.

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Foote T, Helentjaris T, Devos K, Kurata N and Gale M (1995). Was there a single ancestral cereal chromosome? Trends Genet., 11: 81–82.

    Article  PubMed  CAS  Google Scholar 

  • Morjane H, Geistlinger J, Harrabi M, Weising K and Kahl G (1994) Oligonucleotide fingerprinting detects genetic diversity among Ascochyta rabiei isolates from a single chickpea field in Tunisia. Cure. Genetics, 26: 191–197.

    Article  CAS  Google Scholar 

  • Muehlbauer F J and Singh K B (1987) Genetics of chickpea. In: The Chickpea (Eds Saxena M C and Singh K B ), CAB International, Wallingford, Oxon, pp. 99–125.

    Google Scholar 

  • Muehlbauer F J, Kaiser W J and Simon C J (1994) Potential for wild species in cool season food legume breeding. Euphytica, 73: 109–114.

    Article  Google Scholar 

  • Muehlbauer F J, Weeden N F and Hoffman D L (1989) Inheritance and linkage relationships of several isozyme loci in lentil (Lens Miller). J. Hered., 80: 298–303.

    Google Scholar 

  • Murthy B N S, Victor J, Singh R P, Fletcher R A and Saxena P K (1996) In vitro regeneration of chickpea (Cicer arietinum L.): Stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Reg., 19: 233–240.

    CAS  Google Scholar 

  • Nakamura Y, Leppert M, O’Connel P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E and White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science, 235: 516–522.

    Article  Google Scholar 

  • Narayan R K J (1982) Discontinuous DNA variation in the evolution of plant species: the genus Lathyrus. Evolution, 36: 877–891.

    Article  Google Scholar 

  • Narvel J M, Chu W C, Fehr W R, Cregan P B and Shoemaker R C (2000) Development of multiple sets of simple sequence repeat DNA markers covering the soybean genome. Mol. Breed., 6: 175–183.

    Article  CAS  Google Scholar 

  • Nene Y L and Reddy M V (1987) Chickpea diseases and their control. In: The Chickpea (Eds Saxena M C and Singh K B) CAB International, Wallingford, Oxon, UK.

    Google Scholar 

  • Nene Y L and Sheila V K (1992) Important disease problems of kabuli chickpea. In: Disease Resistance Breeding in Chickpea (Eds Singh K B and Saxena M C ), ICARDA, Aleppo, Syria, pp. 11–22.

    Google Scholar 

  • Nene Y L, Sheila V K and Sharma S B (1984) A world list of chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan (L.)) pathogens. ICRISAT Pulse Pathol. Rep., 32, 19.

    Google Scholar 

  • Ocampo B, Venora G, Errico A, Singh K B and Saccardo F (1992) Karyotype analysis in the genus Cicer. J. Genet. Breed., 46: 229–240.

    Google Scholar 

  • Oger P, Petit A and Dessaux Y (1996) A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Sci., 116: 159–168.

    Article  CAS  Google Scholar 

  • Ohri D and Pal M (1991) The origin of chickpea (Cicer arietinum L.): Karyotype and nuclear DNA content. Heredity, 66: 367–372.

    Article  Google Scholar 

  • Ohtsubo H and Ohtsubo E (1994) Involvement of transposition in dispersion of tandem repeat sequences (TrsA) in rice genomes. Mol. Gen. Genet., 245: 449–455.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C M and Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homologous to sequence regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 23: 233–243.

    Google Scholar 

  • Or E, Hovav R and Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci., 39: 315–322.

    Google Scholar 

  • Oram R N, Shaikh M A Q, Zaman K M S and Brown A H D (1987) Isozyme similarity and genetic difference in morphology between Hyprosola, a high yielding, high protein mutant of chickpea (Cicer arietinum L.) and its parental cultivar. Environ. Exp. Bot., 27: 455–462.

    Article  Google Scholar 

  • Otte O and Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta, 200: 238–246.

    Article  CAS  Google Scholar 

  • Pandey R and Ganapathy P S (1984) Isolation of sodium chloride-tolerant callus lines of Cicer arietinum L. cv BG-203. Plant Cell Rep., 10: 35–38.

    Google Scholar 

  • Paterson A, Lander E, Hewitt J D, Peterson S, Lincoln S E and Tanksley S D (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Paterson A H, Lan T H and Reischmann K P (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genet., 14: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Patil P B, Vrinten P L, Scoles G J and Slinkard A E (1995) Variation in the ribosomal RNA units of the genus Lens and Cicer. Euphytica, 83: 33–42.

    Article  CAS  Google Scholar 

  • Penmetsa R and and Cook D (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 275: 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Phillips J C (1988) A distinct race of chickpea wilt in California. Int. Chickpea Newslett., 18: 19–21.

    Google Scholar 

  • Pohill R M and Raven P H (eds) (1981) Advances in Legume Systematics. Royal Botanical Garden, Kew.

    Google Scholar 

  • Polisetty R, Patil P, Deveshwar J J, Khetarpal S and Chandra R (1996) Rooting and establishment of in vitro grown shoot tip explants of chickpea (Cicer arietinum L.). Indian J Exp. Biol., 34: 806–809.

    PubMed  CAS  Google Scholar 

  • Polisetty R, Paul V, Deveshwar J J, Khetarpal S, Suresh K and Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Rep., 16: 565–571.

    CAS  Google Scholar 

  • Powell W, Machray G C and Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci., 1: 215–222.

    Google Scholar 

  • Rakshit S, Winter P, Tekeoglu M, Pfaff T, Juarez Munoz J, Benko-lseppon A M, Huettel B, Muehlbauer F J and Kahl G. A major locus for Ascochyta blight resistance is located on linkage group 4 of the genome map of chickpea (in preparation).

    Google Scholar 

  • Ramana R V, Venu C, Jayasree T and Sadanadam A (1996) Direct somatic embryogenesis and transformation in Cicer arietinum L. Indian J Exp. Biol., 34: 716–718.

    PubMed  CAS  Google Scholar 

  • Ramser J, Weising K, Chikaleke V and Kahl G (1997) Increased informativeness of RAPD analysis by detection of microsatellite motifs. BioTechniques, 23: 285–290.

    PubMed  CAS  Google Scholar 

  • Rao B G and Chopra V L (1989a) Morphogenesis in callus cultures of chickpea. Int. Chickpea Newslett., 21: 7–11.

    Google Scholar 

  • Rao B G and Chopra V L (1989b) Regeneration in chickpea (Cicer arietinum L.) via somatic embryogenesis. J. Plant Physiol., 134: 637–638.

    Article  Google Scholar 

  • Rao S and Naidu M M (1989) A tissue culture derived pesticide tolerant line of chickpea. Proc. Indian Acad. Sci. (Plant Sei), 99: 523–527.

    CAS  Google Scholar 

  • Ratnaparkhe M B, Santra D K, Tullu A and Muehlbauer F J (1998a) Inheritance of inter-simple-sequence polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theort. Appl. Genet., 96: 348–353.

    Article  CAS  Google Scholar 

  • Ratnaparkhe M B, Tekeoglu M and Muehlbauer F J (1998b) Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theort. Appl. Genet., 97: 515–519.

    Article  CAS  Google Scholar 

  • Reddy M V and Kabbabeh S (1985) Pathogenic variability in Ascochyta rabiei (Pass.) Lab. in Syria and Lebanon. Phytophatologia Mediterranea, 24: 265–266.

    Google Scholar 

  • Richardson T, Cato S, Ramser J, Kahl G and Weising K (1995) Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucleic Acids Res., 23: 3798–3799.

    Article  PubMed  CAS  Google Scholar 

  • Robertson L D, Ocampo B and Singh K B (1997) Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica, 95: 309–319.

    Article  Google Scholar 

  • Robinson R A (1976) Plant Pathosystems. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Rossi M, Goggin F L, Milligan S B, Kaloshian I, Ullman D E and Williamson V M (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA, 95: 9750–9754.

    Article  PubMed  CAS  Google Scholar 

  • Rounsley S, et al. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.

    Google Scholar 

  • Sagare A P, Suhasini K and Krishnamurthy K V (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 652–655.

    Article  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y K, Motchoulskaia N, Zakhrov D, Melake-Berhan A, Springer P S, Edwards K J, Lee M, Avramova Z and Bennetzen J L (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science, 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Santra D K, Tekeoglu M, Kaiser W J and Muehlbauer F J (2001) Identification and mapping of QTLs conferring resistance to Ascochyta blight. Crop. Sci. (in press).

    Google Scholar 

  • Saxena M C (1992) Current status and prospects of Kabuli chickpea production. In: Disease Resistance Breeding in Chickpea (Eds Singh K B and Saxena M C), ICARDA, Aleppo, Syria, pp. 1–10. Saxena M C and Singh K B (eds) (1987) The Chickpea. CAB International, Wallingford, UK.

    Google Scholar 

  • Saxena R P and Beg M U (1988) Selection of endosulfan-resistant gram cell line. Plant Cell Tiss. Org. Cult., 12: 273–277.

    Article  CAS  Google Scholar 

  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A and Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol. Gen. Genet., 259: 414–423.

    Article  CAS  Google Scholar 

  • Schmidt T and Heslop-Harrison J S (1996a) High-resolution mapping of repetitive DNA by in-situ hybridization: Molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol. Biol., 30: 1099–1114.

    Article  CAS  Google Scholar 

  • Schmidt T and Heslop-Harrison J S (1996b) The physical and genomic organization of microsatellites in sugar beet. Proc. Natl. Acad. Sci. USA, 93: 8761–8765.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T and Heslop-Harrison J S (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci., 3: 195–199.

    Article  Google Scholar 

  • Scofield S R, Tobias C M, Rathjen J P, Chang J H, Lavelle D T, Michelmore R W and Staskawicz B J (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 274: 2063–2065.

    Article  PubMed  CAS  Google Scholar 

  • Scott K D, Eggler P, Seaton G, Rosetto M, Ablett E M, Lee L S and Henry R J (2000) Analysis of SSRs derived from grape ESTs. Theort. Appl. Genet., 100: 723–726.

    Article  CAS  Google Scholar 

  • Seetaram A, Ramulu C A and Rao D (1991) Selection and isolation of pesticide resistant cotyledonary derived calli clones in C. arietinum. In Vitro,27: 113.

    Google Scholar 

  • Sharma D R, Kumari R and Chowdhury J B (1979) Plant regeneration in Cicer species through tissue culture. Indian J. Exp. Biol., 17: 607–609.

    Google Scholar 

  • Sharma P C and Gupta P K (1982) Karyotypes in some pulse crops. Nucleus, 25: 181–185.

    Google Scholar 

  • Sharma P C and Gupta P K (1984) Pachytene chromosome morphology in Cicer bijugum rech. In: Perspectives in Cytology and Genetics (Eds Manna G K and Sinha U), 4: 485–489.

    Google Scholar 

  • Sharma P C and Gupta P K (1986) Cytogenetics of legume genera Cicer L. and Lens L. In: Genetics and Crop Improvement (Eds Gupta P K and Bahl J R ), Rastogi and Company, Meerut, India, pp. 321–339.

    Google Scholar 

  • Sharma P C, Huttel B, Winter P, Kahl G, Gardner R C and Weising K (1995b) The potential of microsatellites for hybridization-and PCR-based fingerprinting of chickpea (Cicer arietinum L.) and related species. Electrophoresis, 16: 1755–1761.

    Article  PubMed  CAS  Google Scholar 

  • Sharma P C, Winter P, Bunger T, Huttel B, Weigand F, Weising K and Kahl G (1995a) Abundance and polymorphism of di-, tri-and tetranucleotide tandem repeats in chickpea (Cicer arietinum L.). Theort. Appl. Genet., 90: 90–96.

    CAS  Google Scholar 

  • Shri P V and Davis T M (1992) Zeatin-induced shoot regeneration from immature chickpea (Cicer arietinum L.) cotyledons. Plant Cell Tiss. Org. Cult., 28: 45–51.

    Article  CAS  Google Scholar 

  • Sia E A, Jink-Robertson S and Petes T D (1997) Genetic control of microsatellite instability. Mutation Res., 383: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Siefkes-Boer H J, Noonan M J, Bullock D W and Conner A J (1995) Hairy root transformation system in large-seeded grain legumes. Israel J. Plant Sci., 43: 1–5.

    Google Scholar 

  • Simon C J and Muehlbauer F J (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J. Hered., 88: 115–119.

    Article  CAS  Google Scholar 

  • Sindhu J S, Singh K P and Slinkard A E (1983) Inheritance to Fusarium wilt in chickpea. J Hered., 74: 68.

    Google Scholar 

  • Singh B D, Tiwari K N, Srivastava K, Singh R and Srivastava D K (1998) Regeneration systems in chickpea and other legumes and their possible applications. In: Genetics and Biotechnology in Crop Improvement (Eds Gupta P K, Singh S P, Balyan H S, Sharma P C and Ramesh B ), Rastogi Publications, Meerut, India, pp. 341–369.

    Google Scholar 

  • Singh G (1985) Biological specialization and other related studies on parasitisation by Ascochyta rabiei on gram. In: Proc. Workshop on Rabi Pulses, AICPIP, SKUAT, Srinagar, India.

    Google Scholar 

  • Singh H, Kumar J, Smithson J B and Haware M P (1987) Complementation between genes for resistance to race 1 of Fusarium oxysporum Esp. ciceri in chickpea. Plant Pathol., 36: 539–543.

    Article  Google Scholar 

  • Singh K B, Malhotra R S, Halila M H, Knights E J and Verma M M (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica, 73: 137–149.

    Article  Google Scholar 

  • Singh K B, Malhotra R S and Muehlbauer F J (1984) An annotated bibliography of chickpea genetics and breeding. ICRISAT/ICARDA joint publication. ICARDA, PO Box 5466, Aleppo, Syria.

    Google Scholar 

  • Singh K B and Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet. Breed., 47: 199–204.

    Google Scholar 

  • Singh K B and Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theort. Appl. Genet., 95: 418–423.

    Article  Google Scholar 

  • Singh K B, Ocampo B and Robertson L D (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet. Res. Crop Evol., 45: 9–17.

    Article  Google Scholar 

  • Singh K B and Reddy M V (1983) Inheritance of resistance to Ascochyta blight in chickpea. Crop Sci., 23: pp. 9–10.

    Article  Google Scholar 

  • Singh K B and Reddy M V (1993) Sources of resistance to Ascochyta blight in wild Cicer species. Neth. J. Plant Path., 99: 163–167.

    Article  Google Scholar 

  • Singh K B, Reddy M V and Haware M P (1992) Breeding for resistance to ascochyta blight in chickpea. In: Disease Resistance in Chickpea (Eds Singh K B and Saxena M C ), ICARDA, Aleppo, Syria, pp. 23–54.

    Google Scholar 

  • Singh O (1988) Induced Mutations and Cytogenetic Studies in Chickpea (Cicer arietinum L.). Ph.D. thesis, Meerut University, Meerut, India.

    Google Scholar 

  • Singh R P and Singh B D (1989) Recovery of rare interspecific hybrids of gram Cicer arietinum X C. cuneatum L. through tissue culture. Cure. Sci., 58: 874–876.

    Google Scholar 

  • Singh R P, Singh B D, Jaiswal H K, Singh R M and Singh R B (1982) Organogenesis in callus cultures of chickpea. Indian J Agric. Sci., 52: 86–90.

    CAS  Google Scholar 

  • Smeets H J M, Brunner H G, Ropers H H and Wieringa B (1989) Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum. Genet., 83: 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Smyth D R, Kalitsis P, Joseph J L and Sentry J W (1989) Plant retrotransposon from Lillian henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc. Natl. Acad. Sci. USA, 86: 5015–5019.

    Article  CAS  Google Scholar 

  • Srinivasan, Mohapatra T and Sharma R P (1991) Agrobacterium-mediated genetic transformation of chickpea (Cicer arietinum L.). Indian J Exp. Biol., 29: 758–761.

    PubMed  CAS  Google Scholar 

  • Srivastava S K, Singh S N and Khare M N (1984) Assessment of yield losses in some promising gram cultivars due to fusarium wilt. Indian J. Plant Prot., 12: 125–126.

    Google Scholar 

  • Staginnus C, Winter P, Desel C, Schmidt T and Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol. Biol., 39: 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins G L (1971) Chromosome Evolution in Higher Plants. Edward Arnold Ltd., London, p. 219.

    Google Scholar 

  • Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol., 124: 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Surya-Prakash, Chowdhury J B, Jain P K and Chowdhury V K (1992) Factors affecting plant regeneration in chickpea (Cicer arietinum L.). Indian J Exp. Biol., 30: 1149–1153.

    Google Scholar 

  • Suzuki K and Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell, 7: 639–647.

    PubMed  CAS  Google Scholar 

  • Tabe L M, Higgins C M, McNabb W C and Higgins T J V (1993) Genetic engineering of grain and pasteur legumes for improved nutritive value. Genetica, 90: 181–200.

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Frederick R D, Zhou J, Halterman D A, Jia Y and Martin G B (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 274: 2060–2063.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S D, Bernatzky R, Lapitan N L and Prince J P (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA, 85: 6419–6423.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S D, Ganal M W, Price J P, de Vincente M C, Bonierbale M W, Broun P, Fulton T M, Giovannoni H, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Patterson A H, Pineda O, Röder M, Wing R A, Wu W and Young N D (1992) High density molecular linkage maps of tomato and potato genomes. Genetics, 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Tanksley S D and McCouch S R (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277: 1063–1066.

    Article  PubMed  CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 17: 6463–6471.

    Article  PubMed  CAS  Google Scholar 

  • Tayyar R I, Lukaszewski A J and Waines J G (1994) Chromosome banding patterns in the annual species of Cicer. Genome, 37: 656–663.

    Article  CAS  Google Scholar 

  • Tayyar R I and Waines J G (1996) Genetic relationships among annual species of Cicer (Fabaceae) using isozyme variation. Theort. Appl. Genet., 92: 245–254.

    Article  Google Scholar 

  • Tekeoglu M, Santra D K, Kaiser W J and Muehlbauer F J (2001) Ascochyta blight resistance inheritance in three chickpea recombinant inbred lines. Crop Sci. (in press).

    Google Scholar 

  • Tewari S K and Pandey M P (1986) Genetics of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica, 35: 211–215.

    Article  Google Scholar 

  • Tikhonov A P, SanMiguel P J, KakajimaY, Gorenstein N M, Bennetzen J L and Avramova Z (1999) Colinearity and its exception in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA, 96: 7409–7414.

    Article  CAS  Google Scholar 

  • Trieu A T, Burleigh S H, Kardailsky I V, Maldonado-Mendoza I E, Versaw W K, Blaylock L A, Shin H, Chiou T, Katagi H, Dewbre G R, Weigel D and Harrison M J (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J, 22: 531–541.

    Article  CAS  Google Scholar 

  • Tullu A (1996) Genetics of fusarium wilt resistance in chickpea. Ph.D thesis, Crop and Soil Sciences Department, Washington State University, Pullman, USA.

    Google Scholar 

  • Tullu A, Muehlbauer F J, Simon C J, Mayer M S, Kumar J, Kaiser W J and Kraft J M (1998) Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica, 102: 227–232.

    Google Scholar 

  • Tuwafe S, Kahler A L, Boe A and Ferguson M (1988) Inheritance and geographical distribution of allozyme polymorphisms in chickpea (Cicer arietinum L.).

    Google Scholar 

  • Udupa S M, Sharma A, Sharma A P and Pai R A (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J. Plant Biochem. Biotechnol., 2: 83–86.

    Article  CAS  Google Scholar 

  • Unfried K, Schiebel K and Hemleben V (1991) Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene, 99: 63–68.

    Article  CAS  Google Scholar 

  • Upadhyaya H D, Haware M P, Kumar J and Smithson J B (1983a) Resistance to wilt in chickpea. I. Inheritance of late-wilting in response to race 1. Euphytica, 32: 447–452.

    Google Scholar 

  • Upadhyaya H D, Smithson J B, Kumar J and Haware M P (1983b) Resistance to wilt in chickpea. II. Further evidence for two genes for resistance to race 1. Euphytica, 32: 749–755.

    Article  Google Scholar 

  • van der Maesen L J G (1987) Origin, history and taxonomy of chickpea. In: The Chickpea (Eds Saxena M C and Singh K B ), CAB International Publications, Wallingford, UK, pp. 11–34.

    Google Scholar 

  • van Rheenen H A, Reddy M V, Kumar J and Haware M P (1992) Breeding for resistance to soil-borne diseases in chickpea. In: Disease Resistance in Chickpea (Eds Singh K B and Saxena M C ), ICARDA, Aleppo, Syria, pp. 55–70.

    Google Scholar 

  • Verma M M, Sandhu J S, Brar H S and Brar J S (1990) Crossability studies in different species of Cicer (L.). Crop Improv., 17: 179–181.

    Google Scholar 

  • Vershinin A V and Heslop-Harrison J S (1998) Comparative analysis of the nucleosomal structure in rye, wheat and their relatives. Plant Mol. Biol., 36: 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Vir S and Grewal J S (1974) Physiologic specialization in Ascochyta rabiei,the causal organism of gram blight. Indian Phytopathol.,27: 355–360.

    Google Scholar 

  • Vogel J M and Scolnik P A (1997) Direct amplification from microsatellites: detection of simple-sequence repeat-based polymorphism without cloning. In: DNA Markers: Protocols, Aplications and Overviews (Eds Caetano-Anollés G and Gresshoff P M ), Wiley-Lis, John Wiley and Sons Inc., New York, pp. 133–150.

    Google Scholar 

  • Vos P Hogers R, Bleeker M, Reijans M, van de Lee T, Hoernes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res.,23: 4407–4414.

    Google Scholar 

  • Vos P et al. (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnol., 16: 1365–1369.

    Article  CAS  Google Scholar 

  • Vosman B and Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome, 40: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Webb K J, Skot L, Nicholson M N, Jorgensen B and Mizen S (2000) Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Mol. Plant Microbe Interact., 13: 606–616.

    CAS  Google Scholar 

  • Weber J L and May P E (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet., 44: 388–396.

    PubMed  CAS  Google Scholar 

  • Weeden N F, Ambrose M and Swiecicki W (1993) Pisum sativum, pea. In: Genetic Maps. 6th ed. ( Ed O’Brian S J), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 624–634.

    Google Scholar 

  • Weeden N F, Muehlbauer F J and Ladizinsky G (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J. Hered., 83: 123–129.

    Google Scholar 

  • Weising K, Atkinson R G and Gardner R C (1995b) Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Meth. Appl., 4: 249–255.

    Article  CAS  Google Scholar 

  • Weising K, Kaemmer D, Weigand F, Epplen J T and Kahl G (1992) Oligonucleotide fingerprinting reveals probe-dependent levels of informativeness in chickpea (Cicer arietinum L.). Genome, 35: 436–442.

    Article  CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K and Meyer W (1995a) DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Weising K, Ramser J, Kaemmer D, Kahl G and Epplen J T (1991) Oligonucleotide fingerprinting in plants and fungi. In: DNA Fingerprinting: Approaches and applications (Eds Burke T, Dolf G, Jeffreys A J and Wolff R ), Birkhäuser, Basel, pp. 313–329.

    Google Scholar 

  • Weising K, Weigand F, Driesel A J, Kahl G, Zischler H and Epplen J T (1989) Polymorphic simple GATA/GACA repeats in plant genomes. Nucleic Acids Res., 17: 10128.

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Winter P, Hüttel B and Kahl G (1998) Microsatellite markers for molecular breeding. J. Crop Prod., 1: 113–143.

    Article  CAS  Google Scholar 

  • Williams J G K, Kubelik A R, Livak K J, Rafalski J A and Tingey S V (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon A M, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant V J, Rajesh P N, Kahl G and Muehlbauer F J (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum X C. reticulatum cross: Localization of resistance genes for Fusarium races 4 and 5. Theort. Appl. Genet., 101: 1155–1163.

    Article  CAS  Google Scholar 

  • Winter P and Kahl G (1995) Molecular marker technologies for crop improvement. World J Microbiol. Biotechnol., 11: 449–460.

    Article  Google Scholar 

  • Winter P, Pfaff T, Udupa S M, Hüttel B, Sharma P C, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer F J and Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet., 262: 90–101.

    Article  PubMed  CAS  Google Scholar 

  • Wopereis J, Pajuela E, Dazzo F B, Jiang Q, Gresshoff P M, de Bruijn F J, Stougaard J and Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J, 23: 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Jones R, Danneberger L and Scolnik P A (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res., 22: 3257–3258.

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Fu H H, Gupta R and Luan S (1998) Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell, 10: 849–857.

    CAS  Google Scholar 

  • Young N D (1996) QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol., 34: 479–501.

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Kammerbauer C, Studer R, Grzeschik K H and Epplen J T (1992) Dissecting (CAC5/GTG5) multi-locus fingerprints from man into individual locus-specific, hypervariable components. Genomics, 13: 983–990.

    Article  PubMed  CAS  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the near east. Genet. Res. Crop Evol., 46: 133–142.

    Article  Google Scholar 

  • Zohary D and Hopf M (1993) Domestication of Plants in the Old World. Clarendon Press, Oxford, pp. 1–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, P., Staginnus, C., Sharma, P.C., Kahl, G. (2003). Organisation and Genetic Mapping of the Chickpea Genome. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics