Skip to main content

Improvement of Methionine-Deficient Legumes Through Genetic Engineering

  • Chapter
Improvement Strategies of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

  • 175 Accesses

Abstract

A review of research aiming at the improvement of methionine-deficiency in legumes is presented. We discuss three possible strategies to reach this objective and present data on the legume crops where recombinant DNA technology has been applied to introduce and express genes coding for methionine-rich proteins. Some considerations concerning the possibility of introducing allergenic proteins into host plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach S B and Simpson R B (1990) Manipulation of methionine-rich protein genes in seeds. TIBTECH, 8: 156–160.

    Article  CAS  Google Scholar 

  • Altenbach S B, Pearson K W, Leung F W and Sun S S M (1987) Cloning and sequence analysis of a Cdna encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol. Biol., 8: 239–250.

    Article  CAS  Google Scholar 

  • Altenbach S B, Pearson K W, Meeker G, Staraci L C and Sun S M (1989) Enhancement of the methionine con-tent of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol. Biol., 13: 513–522.

    Article  PubMed  CAS  Google Scholar 

  • Altenbach S S, Kuo Ch-Ch, Staraci L C, Pearson K W, Wainwright C W, Georgescu A and Townsend G (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol., 18: 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Ampe C, Van Damme J, De Castro L A B, Sampaio M J, Van Montagu M and Vandekerckhove J (1986) The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.). Eur. J. Biochem., 159: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Aragâo F J L, Barros L M G, De Souza M, Grossi De Sâ M F, De Almeida E R P, Gander E S and Rech E L (1999) Expression of a methionine-rich storage albumin gene from Brazil nut (Bertholletia excelsa H.B.K.) in transgenic bean plants (Phaseolus vulgaris L.). Genet. Mol. Biol., 22: 445–449.

    Article  Google Scholar 

  • Aragâo F J L, Grossi de Sâ M F, De Almeida E R P, Gander E S and Rech E L (1992) Particle bombardment-mediated transient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L.). Plant Mol. Biol., 20: 357–359.

    Article  PubMed  Google Scholar 

  • Aykroyd W R Y and Doughty J (1964) Las leguminosas en la nutriciôn humana. Organizaciôn de las Naci6nes Unidas para la Agricultura y la Alimentacion. Roma.

    Google Scholar 

  • De Castro L A B, Lacerda Z, Aramayo R A, Sampaio M J A M and Gander E S (1987) Evidence for a precursor molecule of Brazil nut 2S seed proteins from biosynthesis and cDNA synthesis. Mol. Gen. Genet., 206: 338–343.

    Article  Google Scholar 

  • De Clercq A, Vanderwiele M, Van Damme J, Guerche P, Van Montagu M, Vandekerckhove J and Krebbers E (1990) Stable accumulation of modified 2S albumin seed storage proteins with higher methionine contents in transgenic plants. Plant Physiol., 94: 970–979.

    Article  PubMed  Google Scholar 

  • Falco S C, Guida T, Locke M, Mauvais J, Sanders C, Ward R T and Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Bio/Technology, 13: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Gander E S, Holmstroem K O, De Paiva G R, De Castro L A B, Carneiro M and Grossi de Sâ M F (1991) Isolation, characterization and expression of a gene coding for a 2S albumin from Bertholletia excelsa (Brazil nut). Plant Mol. Biol., 16: 437–448.

    Article  PubMed  CAS  Google Scholar 

  • Guerche P, De Almeida E R P, Schwarzstein M A, Gander E, Krebbers E and Pelletier G (1990) Expression of the 2S albumin from Bertholletia excelsa in Brasica napus. Mol. Gen. Genetics., 210: 510–520.

    Google Scholar 

  • Hoffman L A, Donaldson D D and Herman E M (1988). A modified storage protein is synthesized, processed and degraded in seeds of transgenic plants. Plant Mol. Biol., 11: 717–729.

    Article  CAS  Google Scholar 

  • Hoffman L M, Donaldson D D, Bookland R, Rashka K and Herman E M (1987) Synthesis and protein body deposition of maize 15 kd zein in transgenic tobacco seeds. EMBO J., 6: 3213–3221.

    PubMed  CAS  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H and Imamura J (1994) Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol. Biol., 26: 1115–1124.

    Article  PubMed  CAS  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H and Imamura J (1995) Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theort. Appl. Genet., 9: 672–631.

    Google Scholar 

  • Molvig L, Tabe L M, Eggum B, Moore A E, Craig S, Spencer D and Higgins T J V (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA, 94: 8393–8398.

    Article  PubMed  CAS  Google Scholar 

  • Müntz K, Christov V, Saalbach G, Saalbach I, Waddell D, Pickardt T, Schieder O and Wuestenhagen T (1998) Genetic engineering for high methionine grain legumes. Nahrung, 42: 125–127.

    Article  PubMed  Google Scholar 

  • Nordlee J A, Taylor S L, Townsend J A, Thomas L A and Bush R K (1996) Identification of a Brazil-nut allergen in transgenic soybeans. N. Engl. J. Med., 334: 688–692.

    Article  PubMed  CAS  Google Scholar 

  • Odani S and Odani S (1998) Isolation and primary structure of a methionine-and cysteine-rich seed protein of Cannabis sativa. Biosci. Biotech. Biochem., 62: 650–654.

    Article  CAS  Google Scholar 

  • Quecini V M (1999) Transferência direta de genes para plantas de Stylosanthes guianensis (Aubl.) Sw. Ph.D. thesis, University of Sao Paulo, School of Agriculture “Luiz de Queiroz”, Piracicaba-SP.

    Google Scholar 

  • Raina A and Datta A (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA, 89: 11774–11778.

    Article  CAS  Google Scholar 

  • Rotenberg B E and lachan A (1975) Estudo da protelna da Castanha do Para. Infbrmativo do Instituto National de Tecnologia, 8: 22–24.

    CAS  Google Scholar 

  • Saalbach I, Pickardt T, Machemehl F, Saalbach G, Shieder O and Müntz K (1994) A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol. Gen. Genet., 242: 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Pickardt T, Waddell D R, Hillmer S, Schieder O and Müntz K (1995) The sulphur-rich Brazil nut 2S albumin is specifically formed in transgenic seeds of the grain legume Vicia narbonensis. Euphytica, 85: 181–192.

    Article  CAS  Google Scholar 

  • Saalbach I, Waddell D R, Pickardt T, Schieder O and Muntz K (1995) Stable Expression of sulphur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seeds. J. Plant Physiol., 145: 674–681.

    Article  CAS  Google Scholar 

  • Swamp S, Timmermans M C, Chauduri S and Messing J (1995) Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J., 8: 359–368

    Article  Google Scholar 

  • Swift Jonathan (1993) Gulliver’s Travels. Wordsworth Classics, Wordsworth Editions Limited, St. Albans, Hertfordshire, UK.

    Google Scholar 

  • Tabe L M, Higgins C M, McNabb W C and Higgins T J V (1993) Genetic engineering of grain and pasture legumes for improved nutritive value. Genetica, 90: 181–200.

    Article  PubMed  CAS  Google Scholar 

  • Tu H M, Godfrey L W and Sun S S M (1998) Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato. Plant Mol. Biol., 37: 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Tu H M, Godfrey L W and Sun S M (1994) Expression of the Brazil nut methionine-rich protein in transgenic potato plants. In: The Molecular and Cellular Biology of the Potato (Eds Belknap W R, Vayda M E and Park W D ), CAB International, Wallingford, pp. 209–220.

    Google Scholar 

  • Vandekerckhove J, Van Damme J, Van Lijsebettens M, Botterman J, De Block M, Vandewiele M, De Clercq A, Leemans J, Van Montagu M and Krebbers E (1989) Enkephalins produced in transgenic plants using modified 2S storage proteins. Bio/Technology, 7: 929–932.

    Article  CAS  Google Scholar 

  • Vincentz M, Leite A, Neshich G, Vriend G, Mattar C, Barros L, Weinberg D, De Almeida E R, Paes de Carvalho M, Aragâo F and Gander E S (1997) ACGT and vicilin core sequences in a promoter domain required for seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein. Plant Mol. Biol., 34: 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Youle R and Huang A H C (1981) Occurrence of low molecular weight and high cysteine containing albumin storage protein in oil seeds of diverse species. Am. J. Bot., 68: 44–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcellino, L.H., Gander, E.S. (2003). Improvement of Methionine-Deficient Legumes Through Genetic Engineering. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics