Skip to main content

Genetic Engineering for Insect Resistance

  • Chapter
  • 166 Accesses

Part of the Focus on Biotechnology book series (FOBI,volume 10A)

Abstract

Legume crops are the most important source of vegetable proteins in the diet of people in the developing world, especially the Indian subcontinent. These crops are also responsible for nitrogen enrichment of soil through symbiosis with nitrogen fixing bacteria. Legumes have been qualitatively and quantitatively improved by conventional breeding over the past five decades. However resistance to several pests and diseases still remains elusive which is the major limiting factor for productivity. Excessive use of synthetic, organic insecticides resulted in the degradation of environment, adverse effect on human health and development of resistant insects. Recent advances in genetic engineering have clearly demonstrated the possibility of incorporating foreign genes for desired characters while preserving the existing traits of improved genotypes. Reduction in the consumption of insecticides is only possible by introducing the genes encoding insecticidal proteins such as 8-endotoxins of Bacillus thuringiensis (Bt), protease inhibitors, alpha-amylase inhibitors, lectins, enzymes such as chitinase and peroxidase. Genetically modified legume crops carrying insect resistance genes have been shown to exhibit considerable protection against the target insects. It is possible to incorporate the resistance against more than one insect pest in the transgenic plants through genetic engineering. This can be achieved by introducing fusion genes or multiple genes in combination encoding the insecticidal proteins which are toxic against a wide range of target pests. Development of resistance in insects is a possibility which can be circumvented or prevented by deploying suitable resistance management strategies. Such approaches include the usage of multiple toxins, crop rotation practices, high or ultra dosage of toxins and refugia. Use of 8-endotoxins of Bacillus thuringiensis in conjunction with other bioinsecticides in an IPM mode can drastically reduce the consumption of chemical pesticides and pave the way for safe and sustainable agriculture.

Keywords

  • Transgenic Plant
  • Bacillus Thuringiensis
  • Insect Resistance
  • Legume Crop
  • Insecticidal Protein

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-0109-9_11
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-0109-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwal A S (1986) Agricultural Pests of India and South-East Asia, Kalyani Publishers, New Delhi.

    Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry, 34: 1453–1466.

    PubMed  CrossRef  CAS  Google Scholar 

  • Charity J A, Anderson M A, Bittisnich D J, Whitecross M and Higgins T J V (1999) Transgenic tobacco and pea expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol. Breed., 5: 357–365.

    CrossRef  CAS  Google Scholar 

  • Czapla T M (1997) Plant lectins as insect control proteins in transgenic plants. In: Advances in Insect Control: The Role of Transgenic Plants (Eds Carozzi N and Koziel M ), Taylor and Francis, London, pp. 123–138.

    Google Scholar 

  • Dale P J, Irwin J A and Scheffler J A (1993) The experimental and commercial release of transgenic crop plants. Plant Breed., 111: 1–22.

    CrossRef  CAS  Google Scholar 

  • De Maagd R A, Bosch D and Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci., 4: 9–13.

    CrossRef  Google Scholar 

  • Down R E, Gatehouse A M R, Hamilton W D O and Gatehouse J A (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glass house trials. J. Insect Physiol., 42: 1035–1045.

    CrossRef  CAS  Google Scholar 

  • Gatehouse A M R, Down R E, Powell K S, Sauvion N, Rahbe Y, Newell C A, Merryweather A, Hamilton W D O and Gatehouse J A (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid, Myzus persicae. Entomol. Exp. Appl., 79: 295–307.

    CrossRef  Google Scholar 

  • Gatehouse A M R, Davison G M, Newell C A, Merryweather A, Hamilton, W D O, Burgess E P J, Gilbert R J C and Gatehouse J A (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: Growth room trials. Mol. Breed., 3: 49–63.

    CAS  Google Scholar 

  • Gatehouse A M R and Hilder V A (1994) Genetic manipulation of crops for insect resistance. In: Molecular Perspectives: Crop Protection (Eds Marshall G and Walters D ), Chapman and Hall, London, pp. 177–201.

    CrossRef  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol., 43: 701–726.

    PubMed  CrossRef  CAS  Google Scholar 

  • Indian Council of Agricultural Research (1997) Agricultural Research Data Book, ICAR, New Delhi.

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels M J and Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed amylase inhibitor of common bean. Entomol. Exp. Appl., 79: 309–315.

    Google Scholar 

  • James C and Krattiger A F (1996) Global Review of Field Testing and Commercialization of Transgenic Plants. ISAAA Briefs No. 1, ISAAA, Ithaca, USA.

    Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan N A, Mukharjee P, Nayak P and Sen S (1997) Expression of crylA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae. Transgenic Res., 6: 177–182.

    CrossRef  CAS  Google Scholar 

  • Krattiger A F (1997) Insect Resistance in Crops: A Case Study of Bacillus thuringiensis. ISAAA, Ithaca, NY.

    Google Scholar 

  • Kumar P A and Sharma R P (1994) Genetic engineering of insect-resistant crop plants with Bacillus thuringiensis crystal protein genes. J. Plant Biochem. Biotech., 3: 3–8.

    CAS  Google Scholar 

  • Kumar P A, Sharma R P and Malik V S (1996) Insecticidal proteins of Bacillus thuringiensis. Adv. Appl. Microbiol., 42: 1–43.

    PubMed  CrossRef  CAS  Google Scholar 

  • Narviez-Vasquez J, Orozco-Cardenas M L and Ryan C A (1992) Differential expression of a chimeric CaMV tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol. Biol., 20: 1149–1157.

    CrossRef  Google Scholar 

  • Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S R, Greenplate J T and Fishhoff D A (1990) Insect resistant cotton plants. Bio/Technology, 8: 939–943.

    PubMed  CrossRef  CAS  Google Scholar 

  • Perlak F J, Fuchs R L, Dean D A, McPherson S and Fischhoff D A (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA, 88: 3324–3328.

    PubMed  CrossRef  CAS  Google Scholar 

  • Perlak F J, Stone T B, Muskopf Y M, Petersen L J, Parker G B, McPherson S A, Wyman J, Love S, Reed G, Biever D and Fischhoff D A (1993) Genetically engineered potatoes: Protection from damage by Colorado potato beetles. Plant Mol. Biol., 22: 313–321.

    PubMed  CrossRef  CAS  Google Scholar 

  • Powell K S, Gatehouse A M R, Hilder V A and Gatehouse J A (1995) Antifeedant effect of plant lectins and an enzyme on the adult stage of the rice brown planthopper Nilaparvata lugens. Entomol. Exp. Appl., 75: 51–59.

    CrossRef  CAS  Google Scholar 

  • Shade R E, Schroeder H E, Pueyo J J, Tabe L M, Murdock L L, Higgins T J V and Chrispeels M J (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology, 12: 793–796.

    CrossRef  CAS  Google Scholar 

  • Schroeder H E, Gollasch S, Moore A, Tabe L M, Craig S, Hardie D C, Chrispeels M J, Spencer D and Higgins T J V (1995) Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum). Plant Physiol., 107: 1233–1239.

    PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D R and Dean D H (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 62: 775–806.

    CAS  Google Scholar 

  • Schuler T H, Poppy G M, Kerry B R and Denholm I (1998) Insect-resistant transgenic plants. Trends Biotech., 16: 168–175.

    CrossRef  CAS  Google Scholar 

  • Singsit C, Adang M J, Lynch R E, Anderson W F, Wang A, Cardineau G and Ozias-Akins P (1997) Expression of a Bacillus thuringiensis crylAc gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res., 6: 169–176.

    PubMed  CrossRef  CAS  Google Scholar 

  • Stewart C N, Adang M J, All J N, Boerma H R, Cardineau G, Tucker D and Parrot A (1996) Genetic transformation, recovery and characterisation of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol., 112: 121–129.

    PubMed  CrossRef  CAS  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C and Zilberstein A (1996) A synthetic cryl C gene, encoding a Bacillus thuringiensis 8-endotoxin confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. USA, 93: 15012–15017.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tabashnik B E (1994) Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol., 39: 47–79.

    CrossRef  Google Scholar 

  • Thomas J C, Wasmann C C, Echt C, Dunn R L, Bohnert H J and McCoy T J (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep., 14: 34–36.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaiswal, R., Kumar, P.A. (2003). Genetic Engineering for Insect Resistance. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive