Skip to main content

Breeding Methodologies for the Improvement of Grain Legumes

  • Chapter

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

This review focuses on selection criteria and breeding methods used with grain legumes. The production of these crops has remained stagnant over time and research strategies which lead to the development of improved cultivars is urgently needed. The variables in the choice of breeding methods have been considered and selection targets have been pointed out. These include the improvement of plant architecture, nitrogen fixation (selection of plant host, inoculant strains and rhizobia by cultivar interaction), seed yield (quantitative, qualitative and stability) and resistance to biotic and abiotic stresses. Breeders must work within these specific constraints and a three-tiered pyramidal breeding strategy is proposed to facilitate yield improvement. Breeding of elite and agronomically valuable germplasm within the same market class is restricted to the apex of the pyramid. The intermediate level has fewer constraints and greater access to diverse germplasm. Interracial crosses within the same gene pool are utilized to exploit genetic differences within adapted material. Utilization of genetic diversity from unadapted sources, including wild germplasm, is conducted at the base of the pyramid. The objective of this breeding strategy is the movement towards the apex, using different breeding procedures to optimize improvement at each tier of the breeding pyramid. The implementation of conventional selection procedures with innovative methods (namely nucleic-acid based techniques) should considerably accelerate the breeding process (marker-assisted selection, MAS). The MAS would be more efficient provided there is tight linkage between the marker and the trait of interest and assuming selection for the marker is more convenient (faster, cheaper, reproducible, early expression). Selection based on the marker is widely used in soybean and Phaseolus; in the future these procedures will be able to penetrate plant breeding of other grain legumes. This approach would be of particular interest in the selection for disease resistance (disease diagnosis, pathogen identification, and screening methods), a basic prerequisite for improving and stabilizing the yield of grain legumes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Blondon A F, Sevignac M, Bannerot H and Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (are) conferring resistance to anthracnose in common bean. Theor. Appl. Genet., 88: 865–870.

    Article  CAS  Google Scholar 

  • Anuradha T and Murty B K (1993) Genetic of harvest index in blackgram (Vigna mungo (L.) Hepper). Intl. J. TropicalAgric., 11: 71–73.

    Google Scholar 

  • Bahl P N (1990) The role of food legumes in the diet of populations of Mediterranean areas and associated nutritional factors. In: The Role of Legumes in the Farming System of the Mediterranean Areas (Eds Osmon A E, Ibrahim M H and Jones M A ), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 143–149.

    Chapter  Google Scholar 

  • Bai Y, Michaels T E and Pauls K P (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome, 40: 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Beebe S E, Ochoa I, Skroch P, Nienhuis J and Tivang J (1995) Genetic diversity among common bean breeding lines developed for Central America. Crop Sci., 35: 1178–1183.

    Article  Google Scholar 

  • Bliss F A (1993) Utilizing the potential for increased nitrogen fixation in common bean. Plant Soil., 152: 157–160.

    Article  Google Scholar 

  • Bliss F A, Pereira P A A, Araugo R S, Henson R A, Kiniecik K A, McFerson J R, Teixeira M G and da Silva C C (1989) Registration of five high nitrogen fixing common bean germplasm lines. Crop Sci., 29: 240–241.

    Article  Google Scholar 

  • Bond D A (1977) A breeder’s approach to establishing production in field beans ( Vicia faba). In: Proceedings Symposium on the Production, Processing and Utilization of Field Bean (Vicia,faba L.) (Ed Thompson R)

    Google Scholar 

  • Bulletin No. 15, Scottish Horticultural Research Institute, Invergowrie, pp. 10–16.

    Google Scholar 

  • Buddenhagen K W and Richards R A (1988) Breeding cool season food legumes for improved performance in stress environments. In: World Crop: Cool season, Food Legumes, Kluwer Academic Publishers, The Netherlands, pp. 81–95.

    Google Scholar 

  • Davies D R (1990) The John Innes pea programme for the ‘80s. Pisum Newslett., 35: 214–223.

    Google Scholar 

  • Delourme R, Bouchereau A, Hubert N and Renard M (1994) Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed. Theor. Appl. Genet., 88: 741–748.

    Article  CAS  Google Scholar 

  • Devine T E and Weber D F (1977) Genetic specificity of nodulation. Euphytica, 26: 527–535.

    Article  Google Scholar 

  • Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R and Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl. Genet., 88: 17–27.

    Article  CAS  Google Scholar 

  • Duc G (2000) The potential of M. truncatula as a model plant to hasten genomics in grain legumes crops. Grain Legum., 28: 18–19.

    Google Scholar 

  • Ellis N T H (2000) Progress in genomics and synteny on grain legumes. Grain Legum., 28: 16–17.

    Google Scholar 

  • Eujayl I, Baum M and Erskine W (1997) Current status of genetic mapping in lentils. Grain Legumes, 18: 19.

    Google Scholar 

  • Gepts P (1988) Genetic Resources of Phaseolus Beans. Dordrecht, Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Gepts P and Bliss R A (1988) Dissemination pathways of common bean (Phaseolus vulgaris) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Economic Botany, 42: 86–104.

    Article  Google Scholar 

  • Gepts P, Nodari R, Tsai S M, Koinange E M K, Liaca V, Gilbertson R and Guzman P (1993) Linkage mapping in common bean. Ann. Rep. Bean Improve. Cooperative, 36: 24–38.

    Google Scholar 

  • Graham P H and Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res., 53: 131–146.

    Article  Google Scholar 

  • Haley S D, Miklas P N, Stavely J R, Byrum J and Kelly J D (1993) Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor Appl. Genet., 86: 505–512.

    Article  CAS  Google Scholar 

  • Hedley C L and Ambrose M J (1981) Designing “leafless” plants for improving yields of the dried pea crop. Adv. Agron., 34: 225–277.

    Article  Google Scholar 

  • Herridge D F, Rupela O P, Serraj R and Beck D P (1994) Screening techniques and improved biological nitrogen fixation in cool season food legumes. Euphytica, 73: 95–108.

    Article  Google Scholar 

  • Hormaza J I, Dollo L and Polito V S (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor. Appl. Genet., 89: 9–13.

    Article  CAS  Google Scholar 

  • Jensen N F (1988). Plant Breeding Methodology, John Wiley and Sons, New York, USA.

    Google Scholar 

  • Jeuffroy M H and Ney B (1997) Crop physiology and productivity. Field Crop Res., 53: 3–16.

    Article  Google Scholar 

  • Jones N, Ougham H and Thomas H (1997) Markers and mapping: we are all geneticists now. New Phytol., 137: 165–177.

    Article  Google Scholar 

  • Jung G, Coyne D P, Skrock P W, Nienhuis J, Arnaud-Santana E, Bokosi J, Kaeppler S M and Steadman J R (1994) Construction of a genetic linkage map and locations of common blight, rust resistance and pubescence loci in Phaseolus vulgaris L. using random amplified polymorphic DNA (RAPD) markers. Ann. Rep. Bean Improve. Cooperative, 37: 37–38.

    Google Scholar 

  • Karp A, Ingram D and Isaac P G (1998) Molecular Tools for Biodiversity: Plants and Animals, Chapman and Hall, London, UK.

    Google Scholar 

  • Kelly J D, Adams M W and Varner G V (1987) Yield stability of determinate and indeterminate dry bean cultivars. Theor. Appl. Genet.,74: 516–521.

    Google Scholar 

  • Kelly J D, Afanador L and Haley S D (1995) Pyramid genes for resistance to bean common mosaic virus. Euphytica, 82: 207–212.

    Article  Google Scholar 

  • Kelly J D, Kolkman J M and Schneider K (1998). Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica, 102: 343–356.

    Article  Google Scholar 

  • Knapp S J (1998) Marker assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci., 38: 1164–1174.

    Article  Google Scholar 

  • Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E and Newberg L (1987) MAPMAKER. An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lie T A (1984). Host genes in Pisum sativum L. conferring resistance to European Rhizobium leguminosarum strains. Plant Soil., 82: 415–425.

    Article  Google Scholar 

  • Mahmoud S H, Gatehouse J A and Boulter D (1984) Inheritance and mapping of isoenzymes in pea (Pisum sativum L.). Theor. Appl. Genet., 68: 559–566.

    Article  CAS  Google Scholar 

  • McKerron D K L and Thompson R (1983) Canopy performance in contrasting genotypes of pea (Pisum sativum L.). In: Perspectives for Pea and Lupins as Protein Crops (Eds Thompson R and Casey R ), Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp. 139–145.

    Google Scholar 

  • Michelmore R W, Paran I and Kesseli R V (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Miklas P N, Afanador L and Kelly J D (1996) Recombination-facilitated RAPD marker-assisted selection for disease resistance in common bean. Crop Sci., 36: 86–90.

    Article  Google Scholar 

  • Nodari R O, Tsai S M, Gilbertson R L and Gepts P (1993b) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linked map. Theor. Appl. Genet., 85: 513–520.

    Article  CAS  Google Scholar 

  • Nodari R O, Tsai S M, Guzman P, Gilbertson R L and Gepts P (1993c) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics, 134: 341–350.

    PubMed  CAS  Google Scholar 

  • Nutman P S (1949) Nuclear and cytoplasmic inheritance of resistance to infection by nodule bacteria in red clover. Heredity, 3: 263–291.

    Article  PubMed  CAS  Google Scholar 

  • Nutman P S (1952) Studies on the physiology of nodule formation. 111. Experiments on the excision of rootips and nodules. Ann. Bot., 16: 80–102.

    Google Scholar 

  • Osborn T C and Bliss F A (1985) Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. J. Am. Soc. Hort. Sci., 110: 484–488.

    CAS  Google Scholar 

  • Parlevliet J E (1979) Components of resistance that reduce the rate of epidemic development. Annu. Rev. Phytopathol., 17: 203–222.

    Article  Google Scholar 

  • Parlevliet J E (1983) Can horizontal resistance be recognized in the presence of vertical resistance in plants exposed to a mixture of pathogen races? Phytopathology, 73: 379.

    Article  Google Scholar 

  • Portapuglia A and Aragona M (1997) Improvement of grain legumes. General part: diseases. Field Crops Res., 53: 73–76.

    Article  Google Scholar 

  • Ranalli P (1996) Phenotypic recurrent selection in common bean (Phaseolus vulgaris L.) based on performance of S2 progenies. Euphytica, 87: 127–132.

    Article  Google Scholar 

  • Ranalli P, Di Candilo M, Giordano I and Casarini B (1981) Correlation and path coefficient analysis in peas (Pisum sativum L.) for processing. Z. Pflanzenzucht, 86: 81–86.

    Google Scholar 

  • Ranalli P and Cubero J 1(1997) Bases for genetic improvement of grain legumes. Field Crops Res.,53: 69–82. Ranalli P, Ruaro G and Del Re P (1991) Response to selection for seed yield in bean (Phaseolus vulgaris L.). Euphytica,57: 117–123.

    Google Scholar 

  • Ranalli P, Ruaro G, Del Re P and Faeti V (1996) Comparison of early generation yield testing and a single seed descent procedure in two bean (Phaseolus vulgaris L.) crosses. J. Genet. Breed., 50: 103–108.

    Google Scholar 

  • Renganayaki K and Sreerengasamy S R (1992) Path coefficient analysis in blackgram. Madras Agricult. J, 79: 634–639.

    Google Scholar 

  • Saxena M C (1993) The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. In: Breeding for Stress Tolerance in Cool-Season Food Legumes (Eds Singh K B and Saxena M C ), ICARDA-Wiley-Sayce, Chichester, pp. 3–14.

    Google Scholar 

  • Schneider K A, Brothers M E and Kelly J D (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci., 37: 51–60.

    Article  CAS  Google Scholar 

  • Sedgley R H, Siddique K H and Walton G H (1990) Chickpea ideotypes for Mediterranean environment. In: Chickpea in the Nineties. ICRISAT, Patancheru, India, 87–92.

    Google Scholar 

  • Sekhar M R (1994). Salt tolerance of mungbean ( Vigna radiata L. Wilczek) at germination stage. Ann. Agric. Res., 15: 90–91.

    Google Scholar 

  • Singh S P (1994) Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Sci., 34: 352–355.

    Article  Google Scholar 

  • Smartt J (1990) Grain Legumes. Evolution and genetic resources. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Snoad B (1983) Improving the pea crop. In: Perspectives for Pea and Lupins as Protein Crops (Eds Thompson R and Casey R ), Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp. 101–112.

    Google Scholar 

  • Snoad B, Payne A and Hobart J (1974) The yield potential of“leafless peas”. Annual Report (1973). John Innes Institute, Norwich, UK, pp. 23–24.

    Google Scholar 

  • Soller M and Beckmann J S (1990). Marker based mapping of quantitative traits loci using replicated progenies. Theor. Appl. Genet., 80: 205–208.

    Article  Google Scholar 

  • Staub J E, Serquen F C and Gupta M (1996) Genetic markers, map construction and their application in plant breeding. Hortscience, 31: 729–741.

    CAS  Google Scholar 

  • Thomas R L, Grafius J E and Kahn S K (1970) Genetic analysis of correlated sequential characters. Heredity, 26: 177–188.

    Article  Google Scholar 

  • Verma S (1992) Correlation and path analysis in blackgram (Vigna mungo (L.) Hepper). Indian J. Pulses Res., 5: 71–73.

    Google Scholar 

  • Weeden N F and Marx G A (1987) Further genetic analysis and linkage relationships of isozyme loci in the pea: confirmation of the diploid nature of the genome.. 1. Hered., 78: 153–159.

    Google Scholar 

  • Welsh W, Bushuk W, Roca W and Singh S P (1995) Characterization of agronomic traits and markers of recombinant inbred lines from infra-and interracial populations of Phaseolus vulgaris L. Theor. Appl. Genet., 91: 169–177.

    Article  Google Scholar 

  • White J W, Kornegay J, Castillo J, Cajiao C H and Tejeda G (1992) Effect of growth habitat on yield of large-seeded bush cultivars of common bean. Field Crops Res., 29: 151–161.

    Article  Google Scholar 

  • Williams J G K, Kubelik A R, Livak K J, Rafalksi J A and Tingey S V (1990) DNA poly-morphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531–66535.

    Article  PubMed  CAS  Google Scholar 

  • Young R A and Kelly J D (1996) RAPD markers flanking the are gene for anthracnose resistance in common bean. J Am. Soc. Hort. Sci.121: 37–41.

    Google Scholar 

  • Yu J, Giu W K, Provvidenti R and Weeden N F (1995) Identifying and mapping two DNA markers linked to the gene conferring resistance to pea enation mosaic virus. J Am. Soc. Hort. Sci., 120: 730–733.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ranalli, P. (2003). Breeding Methodologies for the Improvement of Grain Legumes. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics