Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 11))

Abstract

In this chapter we consider the extension of 4-component relativistic methods from atomic to molecular systems, in particular the challenges arising from the introduction of the algebraic approximation. In order to analyze the variational stability of the relativistic many-electron Hamiltonian we derive a variational theory of QED in the semiclassical limit using the second quantization formalism and exponential parametrization. In QED the negative-energy orbitals are filled leading to a true minimization principle for the electronic ground state, whereas in the standard 4-component approach these orbitals are empty and treated as an orthogonal complement, thus leading to a minimax principle. We emphasize the non-uniqueness of the resulting no-pair Hamiltonian of the standard approach. 4-component methods allow the continuous update of the Hamiltonian and thereby complete relaxation of the electronic wave function. We also discuss more practical aspects of the implementation of 4-component relativistic methods. We carefully analyze their computational cost and conclude that the difference with respect to non-relativistic methods constitute a prefactor and not a difference in order. We furthermore discuss how computational cost may be reduced while staying at the 4-component level, e.g. by exploiting the atomic nature of the small component density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson S., (2001) J. Mol. Struct. (Theochem) 547, 279.

    CAS  Google Scholar 

  2. Grant I.P., (1961) Proc. R. Soc. London A 262, 555.

    Google Scholar 

  3. Schwarz W.H.E., and Wallmeier H., (1982) Mol. Phys. 46, 1045.

    CAS  Google Scholar 

  4. Schwarz W.H.E., and Wechsel-Trakowski E., (1984) Chem. Phys. Lett. 85, 94.

    Google Scholar 

  5. Brown G. E., and Ravenhall D. G., (1951) Proc. Roy. Soc. London A 208, 552.

    CAS  Google Scholar 

  6. Grant I. P., and Quiney H. M., (1988) Adv. At. Mol. Phys. 23, 37.

    Google Scholar 

  7. Engel E., (1995) Int. J. Quant. Chem. 56, 217.

    CAS  Google Scholar 

  8. Swirles B., (1935) Proc. Roy. Soc. (London) A 152, 625.

    Google Scholar 

  9. Matsuoka O., Suzuki N., Aoyama T., and Malli G., (1980) J. Chem. Phys. 73, 1320.

    CAS  Google Scholar 

  10. Aoyama T., Yamakawa H., and Matsuoka O., (1980) J. Chem. Phys. 73, 1329.

    CAS  Google Scholar 

  11. McClean A.D., and Lee Y.S., (1982) in Current Aspects of Quanturm Chemistry R. Carbo (ed.), Elsevier.

    Google Scholar 

  12. Visscher L., Visser O., Aerts P.J.C., Merenga H. and Nieuwpoort W.C., (1994) Comp. Phys. Comm. 81, 120.

    CAS  Google Scholar 

  13. Dyall K.G., Taylor P.R., Faegri K. jr. and Partridge H., (1991) J. Chem. Phys. 95, 2583.

    CAS  Google Scholar 

  14. Saue T., Faegri K. jr., Helgaker T., and Gropen O., (1997) Mol. Phys. 91, 937.

    CAS  Google Scholar 

  15. Quiney H.M., Skaane H., and Grant I.P., (1997) J. Phys. B 30, L829.

    CAS  Google Scholar 

  16. Yanai T., Nakajima T., Ishikawa Y., and Hirao K., (2001) J. Chem. Phys. 114, 6526.

    CAS  Google Scholar 

  17. Dyall K.G., (1994) Chem. Phys. Lett. 224, 186.

    CAS  Google Scholar 

  18. Laerdahl J.K., Saue T., and Faegri K. jr., (1997) Theor. Chem. Acc. 97, 177

    CAS  Google Scholar 

  19. Jensen H.J.Aa., Dyall K.G., Saue T., and Faegri K. jr., (1996) J. Chem. Phys. 104, 4083.

    CAS  Google Scholar 

  20. Thyssen J., (2001) Ph. D. thesis, University of Southern Denmark.

    Google Scholar 

  21. Visscher L., Saue T., Nieuwpoort W.C., Fægri K. jr. and Gropen O., (1993) J. Chem. Phys. 99, 6704.

    CAS  Google Scholar 

  22. Visscher L., Lee T.J. and Dyall K.G., (1996) J. Chem. Phys. 105, 8769.

    CAS  Google Scholar 

  23. Visscher L., Eliav E., and Kaldor U., (2001) J. Chem. Phys. 115, 759.

    Google Scholar 

  24. Varga S., Engel E., Sepp W.-D., and Fricke B., (1999) Phys. Rev. A 59, 4288.

    CAS  Google Scholar 

  25. Liu W.J., Hong G.Y., Dai D.D., Li L.M., and Dolg M., (1997) Theor. Chem. Acc. 96, 75.

    CAS  Google Scholar 

  26. Yanai T., Iikura H., Nakajima T., Ishikawa Y., and Hirao K., (2001) J. Chem. Phys. 115, 8267.

    CAS  Google Scholar 

  27. Saue T., and Helgaker T., (2002) J. Comp. Chem. 23, 814.

    CAS  Google Scholar 

  28. Szabo A., and Ostlund N., (1989) Modern quantum chemistry: introduction to advanced electronic structure theory, McGraw-Hill, New York.

    Google Scholar 

  29. McWeeny R., (1992) Methods of Molecular Quantum Mechanics, Academic Press, London.

    Google Scholar 

  30. B. O. Roos (ed.) (1992) Lecture Notes in Quantum Chemistry — European Summer School in Quantum Chemistry., Lecture Notes in Chemistry 58 Springer, Berlin;

    Google Scholar 

  31. B. O. Roos (ed.) (1994) Lecture Notes in Quantum Chemistry II — European Summer School in Quantum Chemistry., Lecture Notes in Chemistry 64 Springer, Berlin.

    Google Scholar 

  32. Helgaker T., Jørgensen P., and Olsen J., (2000) Molecular Electronic Structure Theory, John Wiley & Sons, Ltd, Chichester.

    Google Scholar 

  33. Fischer C.F., (2000) Mol. Phys. 98, 1043.

    CAS  Google Scholar 

  34. Dirac P.A.M., (1928) Proc. Roy. Soc. London A 117, 714.

    Google Scholar 

  35. Dirac P.A.M., (1928) Proc. Roy. Soc. London A 118 351.

    CAS  Google Scholar 

  36. Sakurai J.J., (1967) Advanced Quantum Mechanics, AddisonWesley, Reading, Massachusetts.

    Google Scholar 

  37. Poole C.P., and Farach H.A., (1982) Found. Phys. 12, 719.

    Google Scholar 

  38. R. E. Moss R.E., (1973) Advanced Molecular Quantum Mechanics, Chapmann and Hall, London.

    Google Scholar 

  39. Gell-Mann M., (1956) Nuovo Cimento Suppl. 4, 848.

    Google Scholar 

  40. Schwarzschild K., (1903) Gött. Nach. Math.-Phys. Kl., 126.

    Google Scholar 

  41. Saue T., in Relativistic Electronic Structure Theory. Part 1. Fundamental Aspects, P. Schwerdtfeger (ed.), Elsevier, to be published.

    Google Scholar 

  42. Schrödinger E., (1930) Sitzungsber. Phys. Math. Kl., 418.

    Google Scholar 

  43. Jackson J.D., and Okun L.B., (2001) Rev. Mod. Phys. 73, 663.

    CAS  Google Scholar 

  44. Bloch F., (1961) in W. Heisenberg und die Physik unserer Zeit, F. Bopp (ed.), Vieweg & Sohn, Braunschweig.

    Google Scholar 

  45. Griffith D.J., (1999) Introduction to Electrodynamics, PrenticeHall, Upper Saddle River, New Jersey.

    Google Scholar 

  46. Cohen-Tannoudji C., Dupont-Roc J., and Grynberg G., (1987) Photons et atomes, Savoirs Actuels, New York.

    Google Scholar 

  47. Heaviside O., (1889) Philos. Mag., Ser.5 27, 324.

    Google Scholar 

  48. Darwin C.G., (1920) Phil.Mag. 39, 537.

    Google Scholar 

  49. Born M. and Oppenheimer J.R., (1927) Ann. Phys. 84, 457.

    CAS  Google Scholar 

  50. Kutzelnigg W., (1997) Chem. Phys. 225, 203.

    CAS  Google Scholar 

  51. Wigner E., (1932) Nachrichten der Akad. der Wissensch. zu Göttingen,II, 546.

    Google Scholar 

  52. Pauli W., (1927) Z. Phys. 43, 601, see footnote 2 on page 607.

    CAS  Google Scholar 

  53. Saue T., and Jensen H.J.A., (1999) J. Chem. Phys. 111, 6211.

    CAS  Google Scholar 

  54. Saue T. and Jensen H.J.A., (2000) in Mathematical Methods for Ab Initio Quantum Chemistry, M. Defrancheschi and C. Le Bris (eds.), Lecture Notes in Chemistry, Springer, Berlin.

    Google Scholar 

  55. Dirac P.A.M., (1930) Proc. Roy. Soc. London A 126, 360.

    CAS  Google Scholar 

  56. Dirac P.A.M., (1932) Proc. Roy. Soc. London A 133, 60.

    Google Scholar 

  57. Anderson C.D., (1932) Phys.Rev. 41, 405.

    CAS  Google Scholar 

  58. Visscher L., and Saue T., (2000) J. Chem. Phys. 113, 3996.

    CAS  Google Scholar 

  59. Faegri K. jr., and Saue T., (2001) J. Chem. Phys. 115, 2456.

    CAS  Google Scholar 

  60. Kutzelnigg W., (1989) Z. Phys. D. 11, 15.

    CAS  Google Scholar 

  61. Lévy-Leblond J.-M., (1967) Commun. Math. Phys. 6, 286.

    Google Scholar 

  62. Hennum A.C., Klopper W. and Helgaker T., (2001) J. Chem. Phys. 115, 7356.

    CAS  Google Scholar 

  63. Dyall K.G., (1994) J. Chem. Phys. 100, 2118.

    CAS  Google Scholar 

  64. Visscher L., and van Lenthe E., (1999) J. Chem. Phys. 306, 357.

    CAS  Google Scholar 

  65. Chraplyvy Z.V., (1953) Phys.Rev. 91, 388; (1953) ibid. 92, 1310.

    Google Scholar 

  66. Barker W.A., and Glover F.N., (1955) Phys.Rev. 99, 317.

    Google Scholar 

  67. Itoh T., (1965) Rev. Mod. Phys. 37, 159.

    Google Scholar 

  68. Sjovoll M., Fagerli H., Gropen O., Almlof J., Saue T., Olsen J., and Helgaker T., (1997) J. Chem. Phys. 107, 5496.

    CAS  Google Scholar 

  69. Breit G., (1929) Phys.Rev. 34, 553.

    CAS  Google Scholar 

  70. Saue T., (1996) Ph. D. thesis, University of Oslo.

    Google Scholar 

  71. Visser O., Visscher L., Aerts P.J.C., and Nieuwpoort W.C., (1992) Theor. Chim. Acta 81, 405.

    CAS  Google Scholar 

  72. Quiney H.M., Skaane H., and Grant I.P., (1998) Chem. Phys. Lett. 290 473.

    CAS  Google Scholar 

  73. Dirac P.A.M., (1927) Proc. Roy. Soc. London A 113, 243.

    Google Scholar 

  74. Jordan P., (1927) Zeit. Phys. 44, 473.

    Google Scholar 

  75. Jordan P., and Wigner E., (1928) Zeit. Phys. 47, 631.

    CAS  Google Scholar 

  76. Fock V., (1932) Zeit. Phys. 75, 622.

    Google Scholar 

  77. Jordan P., (1932) Zeit. Phys. 75, 648.

    Google Scholar 

  78. Furry W.H., (1951) Phys. Rev. 81, 115.

    Google Scholar 

  79. Sucher J., (1980) Phys. Rev. 22, 348.

    CAS  Google Scholar 

  80. Sucher J., (1984) Int. J. Quant. Chem.: Quant. Chem. Symp. 25, 3.

    CAS  Google Scholar 

  81. Kutzelnigg W., (1987) Phys. Scr. 36, 416.

    CAS  Google Scholar 

  82. Dunning T.H. and McKoy V., (1967) J. Chem. Phys. 47, 1735.

    CAS  Google Scholar 

  83. Talman J.D., (1986) Phys. Rev. Lett. 57, 1091.

    CAS  Google Scholar 

  84. Chaix P., and Iracane D., (1989) J. Phys. B: At. Mol. Opt. Phys. 22, 3791; (1989) ibid. 22, 3815.

    Google Scholar 

  85. Greiner W., (1990) Relativistic Quantum Mechanics, SpringerVerlag, Berlin.

    Google Scholar 

  86. Wick G.C., (1950) Phys. Rev. 80, 268.

    Google Scholar 

  87. Fulde P., (1995) Electron Correlation in Molecules and Solids, Springer, Berlin.

    Google Scholar 

  88. Rajagopal A.K., and Callaway J., (1973) Phys. Rev. B 7, 1912.

    CAS  Google Scholar 

  89. Mittleman M.H., (1981) Phys. Rev. A 24, 1167.

    CAS  Google Scholar 

  90. Barysz M., and Sadlej A.J., (2001) J. Mol. Struct. THEOCHEM 573, 181.

    CAS  Google Scholar 

  91. Bunge C.F., Jauregui R., and Ley-Koo E., (1998) Int. J. Quant. Chem. 70, 805.

    CAS  Google Scholar 

  92. Bethe H.A., and Salpeter E.E., (1957) Quantum mechanics of oneand two-electron atoms, Springer, Berlin.

    Google Scholar 

  93. Visscher L. and Dyall K.G., (1997) At. Data Nucl. Data Tables 67, 207.

    CAS  Google Scholar 

  94. Aerts P.J.C., (1986) Ph. D. thesis, University of Groningen.

    Google Scholar 

  95. Matsuoka O., (1992) J. Chem. Phys. 97 2271.

    CAS  Google Scholar 

  96. McMurchie L.E., and Davidson E.R., J. Comp. Phys. 26, 218 (1978).

    CAS  Google Scholar 

  97. Stanton R.E., and Havriliak S., (1984) J. Chem. Phys. 81, 1910.

    CAS  Google Scholar 

  98. Dyall K.G., Grant I.P. and Wilson S., (1984) J. Phys. B 17, 493.

    CAS  Google Scholar 

  99. Faegri K. jr., (2001) Theor. Chem. Acc. 105, 252.

    CAS  Google Scholar 

  100. Saue T., Faegri K. jr., and Gropen O., (1996) Chem. Phys. Lett. 263, 360.

    CAS  Google Scholar 

  101. Dyall K.G., (1997) J. Chem. Phys. 106, 9618.

    CAS  Google Scholar 

  102. Dyall K.G., (1998) J. Chem. Phys. 109, 4201.

    CAS  Google Scholar 

  103. Dyall K.G., and Enevoldsen T., (1999) J. Chem. Phys. 111 10000

    CAS  Google Scholar 

  104. Dyall K.G., (2001) J. Chem. Phys. 115, 9136.

    CAS  Google Scholar 

  105. Visscher L., Aerts P.J.C., Visser O., and Nieuwpoort W.C., (1991) Int. J. Quant. Chem.: Quant. Chem. Symp. 25, 131.

    CAS  Google Scholar 

  106. Matsuoka O., (1992) Chem. Phys. Lett. 195, 184.

    CAS  Google Scholar 

  107. Visscher L., (1997) Theor. Chem. Acc. 98, 68.

    CAS  Google Scholar 

  108. de Jong G. Th., and Visscher L., Theor. Chem. Acc. published online at http://dx.doi.org/10.1007/s002140020335.

    Google Scholar 

  109. Visscher L., (2002) J. Comp. Chem. 23, 759.

    CAS  Google Scholar 

  110. Pernpointner M., Visscher L., de Jong W.A., and Broer R., (2000) J. Comp. Chem. 21, 1176.

    CAS  Google Scholar 

  111. Visscher L., in P. Schwerdtfeger(ed.), Relativistic Electronic Structure Theory. Part 1. Fundamental Aspects, Elsevier, to be published.

    Google Scholar 

  112. Lindgren I., and Morrison J., (1986) Atomic Many-Body Theory, Springer-Verlag, Berlin.

    Google Scholar 

  113. Kaldor U., (1988) Phys. Rev. A 38, 6013; (1998) J. Chem. Phys. 88, 5248.

    CAS  Google Scholar 

  114. Kaldor U., (1991) Theor. Chim. Acta 80, 427.

    CAS  Google Scholar 

  115. White C.A., Johnson B., Gill P., and Head-Gordon M., (1994) Chem. Phys. Lett. 230, 8.

    CAS  Google Scholar 

  116. Schwegler E., and Challacombe M., (1996) J. Chem. Phys. 105, 2726.

    CAS  Google Scholar 

  117. Schutz M., and Werner H.- J., (2001) J. Chem. Phys. 114, 661.

    CAS  Google Scholar 

  118. Visscher L., Dyall K.G., and Lee T.J., (1995) Int. Journal of Quant. Chem. : Quant. Chem. Symp. 29, 411.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saue, T., Visscher, L. (2003). Four-Component Electronic Structure Methods for Molecules. In: Kaldor, U., Wilson, S. (eds) Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Progress in Theoretical Chemistry and Physics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0105-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0105-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6313-7

  • Online ISBN: 978-94-017-0105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics