Skip to main content

An Optimization Technique in Structural-Acoustic Design of Sedan Body Panels

  • Conference paper
IUTAM Symposium on Designing for Quietness

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 102))

  • 282 Accesses

Abstract

Optimization techniques have so far been rarely used for structural-acoustic purposes. However, they are excellently suited for noise reduction of simple and large scale simulation models. The paper describes a general approach of utilizing optimization procedures in vehicle noise, vibration and harshness problems. We start with a review of structural-acoustic optimization. Then, the noise transfer function including structural harmonic analysis, acoustic influence coefficients and their coupling is described. This is followed by some remarks on the optimization process, discussing objective functions, useful design parameters and sensitivity analysis. Finally, two examples including a hat-shelf and a floor structure will be presented in the application section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bathe, K.-J.: 1982, Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Christensen, S. T. and N. Olhoff: 1998, ‘Shape optimization of a loudspeaker diaphragm with respect to sound directivity properties’. Control and Cybernetics 27(2), 177–198.

    MathSciNet  MATH  Google Scholar 

  • Christensen, S. T., S. V. Sorokin, and N. Olhoff: 1998, ‘On analysis and optimization in structural acoustics — Part I: Problem formulation and solution techniques’. Structural Optimization 16, 83–95.

    Google Scholar 

  • Esping, B.: 1995, ‘Design optimization as an engineering tool’. Structural Optimization 10, 137–152.

    Article  Google Scholar 

  • Flanigan, D. L. and S. G. Borders: 1984, ‘Application of Acoustic Modeling Methods for Vehicle Boom Analysis’. SAE-paper840744 pp. 207–217.

    Google Scholar 

  • Freymann, R., R. Stryczek, and H. Spannheimer: 1995, ‘Dynamic Response of Coupled Structural-Acoustic Systems’. Journal of Low Frequency Noise and Vibration 14(1), 11–32.

    Google Scholar 

  • Giebeler, W.-R. and G. Booz: 1994, ‘Akustisches Verhalten als Zielvorgabe in der Karosserieentwicklung’. In: Berechnung und Simulation im Fahrzeugbau, pp. 237–252, VDI-Report 1153.

    Google Scholar 

  • Haftka, R. T. and H. M. Adelman: 1989, ‘Recent Developments in Structural Sensitivity Analysis’. Structural Optimization 1, 137–151.

    Article  Google Scholar 

  • Hagiwara, L, Z.-D. Ma, A. Arai, and K. Nagabuchi: 1991, ‘Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods’. SAE Technical Paper Series No. 910208. 10 pages.

    Book  Google Scholar 

  • Hänle, U. and J. Sielaff: 1998, ‘Eine Berechnungstrategie zur Auslegung des komfortrelevanten Karosserie-Strukturverhaltens’. In: Berechnung und Simulation im Fahrzeugbau, pp. 733–750, VDI-Report 1411.

    Google Scholar 

  • Hermans, L. and M. Brughmans: 2000, ‘Enabling Vibro-Acoustic optimization in a superelement environment: A case study’. Proceedings- SPIE The International Society for Optical Engineering, Issue 4062//PT2 pp. 1146–1152.

    Google Scholar 

  • Ishiyama, S.-I., M. Imai, S.-I. Maruyama, H. Ido, N. Sugiura, and S. Suzuki: 1988, ‘The application of ACOUST/BOOM — A noise level prediction and reduction code’. SAE-paper 880910 pp. 195–205.

    Book  Google Scholar 

  • Kibsgaard, S.: 1992, ‘Sensitivity Analysis — The basis for optimization’. International Journal for Numerical Methods in Engineering 34, 901–932.

    Article  Google Scholar 

  • Kitamura, H., M. Sano, M. Fukushima, T. Yagi, and M. Furuyama: 1990, ‘Use of Structural-Acoustic Coupling Analysis to Improve the Acoustic Characteristics of the Vehicle Body’. SAE-paper905216 pp. 741–746.

    Google Scholar 

  • Koopmann, G. H. and J. B. Fahnline: 1997, Designing Quiet Structures: A Sound Power Minimization Approach. San Diego, London: Academic Press.

    Google Scholar 

  • Kozukue, W., C. Pal, and I. Hagiwara: 1992, ‘Optimization of noise level Reduction by Truncated Model Coupled Structural-Acoustic Sensitivity Analysis’. Computers in Engineering (ASME) 2, 15–22.

    Google Scholar 

  • la Civita, M. and A. Sestieri: 1999, ‘Optimization of an Engine Mounting System for Vibro-Acoustic Comfort Improvement’. Proceedings- SPIE The International Society for Optical Engineering, Issue 3727//PT2 pp. 1998–2004.

    Google Scholar 

  • Ma, Z.-D. and I. Hagiwara: 1991a, ‘Sensitivity Analysis Methods for Coupled Acoustic-Structural Systems Part I: Modal Sensitivities’. AIAA Journal 29(11), 1787–1795.

    Article  ADS  MATH  Google Scholar 

  • Ma, Z.-D. and I. Hagiwara: 1991b, ‘Sensitivity Analysis Methods for Coupled Acoustic-Structural Systems Part II: Direct Frequency Response and its Sensitivities’. AIAA Journal 29(11), 1796–1801.

    Article  ADS  MATH  Google Scholar 

  • Ma, Z.-D. and I. Hagiwara: 1994, ‘Development of New Mode-Superposition Technique for Truncating Lower and/or Higher-Frequency Modes (Application of Eigenmode Sensitivity Analysis for Systems with Repeated Eigenvalues)’. JSME International Journal, Series C 37(1), 7–13.

    Google Scholar 

  • Marburg, S.: 1996, ‘Calculation and Visualization of Acoustic Influence Co-efficients in Vehicle Cabins using Mode Superposition Techniques’. In: C. A. Brebbia, J. B. Martins, et al. (eds.): Boundary Elements XVIII Southampton Boston, pp. 13–22, Computational Mechanics Publications.

    Google Scholar 

  • Marburg, S.: 1998, ‘Einige Untersuchungen zur akustischen Wandadmittanz’. In: A. Sill (ed.): Fortschritte in der Akustik — Publikationen zur 24. Jahrestagung für Akustik. Zürich, pp. 606–607.

    Google Scholar 

  • Marburg, S.: 2000, ‘Six elements per wavelength. Is that enough?’. Journal of Computational Acoustics, accepted for publication.

    Google Scholar 

  • Marburg, S.: 2001a, ‘Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part I: Theory’. Structural and Multidisciplinary Optimization, accepted for publication.

    Google Scholar 

  • Marburg, S.: 2001b, ‘A general concept for design modification of shell meshes in structural-acoustic optimization. Part I: Formulation of the concept’. Finite Elements in Analysis and Design, accepted for publication.

    Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 1999, ‘A Study on the Acoustic Boundary Admittance. Determination, Results and Consequences’. Engineering Analysis with Boundary Elements 23, 737–744.

    Article  MATH  Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 2001a, ‘Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part II: Application to a vehicle dashboard’. Structural and Multidisciplinary Optimization, accepted for publication.

    Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 2001b, ‘A general concept for design modification of shell meshes in structural-acoustic optimization. Part II: Application to a vehicle floor panel.’. Finite Elements in Analysis and Design, accepted for publication.

    Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 2001c, ‘Shape optimization of a vehicle hat-shelf: Improving acoustic properties for different load-cases by maximizing first eigen-frequency’. Computers and Structures, accepted for publication.

    Google Scholar 

  • Marburg, S., H.-J. Hardtke, R. Schmidt, and D. Pawandenat: 1997a, ‘An Application of the Concept of Acoustic Influence Coefficients for the Optimization of a Vehicle Roof’. Engineering Analysis with Boundary Elements 20(4), 305–310.

    Article  Google Scholar 

  • Marburg, S., H.-J. Hardtke, R. Schmidt, and D. Pawandenat: 1997b, ‘Design optimization of a vehicle panel with respect to cabin noise problems’. In: Proceedings of the NAFEMS World-Congress. Stuttgart, pp. 885–896.

    Google Scholar 

  • Milsted, M. G., T. Zhang, and R. A. Hall: 1993, ‘A numerical method for noise optimization of engine structures’. Proceedings of the Institution of Mechanical Engineers / Part D: Journal of Automobile Engineering 207, 135–143.

    Article  Google Scholar 

  • Mühlmeier, M., T. Kumbein, and N. Vogler: 1994, ‘Identifikation und Reduzierung der Flächenbeteiligungen am niederfrequenten Innenraumgeräusch’. In: Berechnung und Simulation im Fahrzeugbau, pp. 221–235, VDI-Report 1153.

    Google Scholar 

  • Nefske, D. J.: 1985, ‘Acoustic finite element analysis of the automobile passenger compartment with absorption materials’. In: Proceedings of NOISE-CON 85. pp. 33–36.

    Google Scholar 

  • Pal, C. and I. Hagiwara: 1993, ‘Dynamic Analysis of a Coupled Structural-Acoustic Problem. Simultaneous Multi-Modal Reduction of Vehicle Interior Noise Level by Combined Optimization’. Finite Elements in Analysis and Design 14, 225–234.

    Article  MATH  Google Scholar 

  • Pal, C. and I. Hagiwara: 1994, ‘Optimization of Noise Level Reduction by truncated modal coupled Structural-Acoustic Sensitivity Analysis’. JSME International Journal, Series C 37(2), 246–251.

    Google Scholar 

  • Roesems, D.: 1997, ‘A new methodology to support an optimized NVH engineering process’. Sound and Vibration 31(5), 36–45.

    Google Scholar 

  • Shi, Q., I. Hagiwara, A. Azetsu, and T. Ichkawa: 1998, ‘Holographic neural network approximations for acoustic optimization’. JSAE Review 19, 361–363.

    Article  Google Scholar 

  • Sielaff, J., A. Kropp, A. Irrgang, and H. P. T. Trong: 1998, ‘CAE-gestützte Auslegung der Karosserie am Beispiel der Innenraumakustik’. In: Entwicklungen im Karosseriebau. pp. 231–259, VDI-Report 1398.

    Google Scholar 

  • Suzuki, S.: 1989, ‘Boundary element analysis of structural-acoustic problems with complicated boundary conditions’. In: C. A. Brebbia and J. Connor (eds.): Advances in Boundary Elements, Vol. 2. pp. 341–353, Springer-Verlag.

    Google Scholar 

  • Suzuki, S., S. Maruyama, and H. Ido: 1989, ‘Boundary element analysis of cavity noise problems with complicated boundary conditions’. Journal of Sound and Vibrations 130(1), 79–91.

    Article  ADS  MATH  Google Scholar 

  • Wang, S.: 1999, ‘Design Sensitivity Analysis of Noise, Vibration, and Harshness of Vehicle Body Structure’. Mechanics of Structures and Machines 27(3), 317–336.

    Article  Google Scholar 

  • Yamazaki, I. and T. Inoue: 1989, ‘An Application of Structural-Acoustic Coupling Analysis to Boom Noise’. SAE-paper891966 pp. 1–9.

    Google Scholar 

  • Yashiro, H., K. Suzuki, Y. Kajio, I. Hagiwara, and A. Arai: 1985, ‘An application of structural-acoustic analysis to car body structures’. In: Proceedings of SAE Surface Vehicle Noise and Vibration Conference. Traverse City, Michigan.

    Google Scholar 

  • Yim, H. J. and S. B. Lee: 1997, ‘Design optimization of vehicle structures for idle shake vibration’. Proceedings- SPIE The International Society for Optical Engineering, Issue 3089//PT1 pp. 432–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Marburg, S., Hardtke, HJ. (2002). An Optimization Technique in Structural-Acoustic Design of Sedan Body Panels. In: Munjal, M.L. (eds) IUTAM Symposium on Designing for Quietness. Solid Mechanics and Its Applications, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0095-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0095-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6081-5

  • Online ISBN: 978-94-017-0095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics