Skip to main content

An Experimental Verification of Structural-Acoustic Modeling and Design Optimization

  • Conference paper
IUTAM Symposium on Designing for Quietness

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 102))

  • 285 Accesses

Abstract

A number of papers have been published on the simulation of structural-acoustic design optimization. However, extensive work is required to verify these results in practical applications. Herein, a steel box of 1.0×1.1×1.5 meters with an external beam structure welded on three surface plates was investigated. This investigation included experimental modal analysis and experimental measurements of certain noise transfer functions (sound pressure at points inside the box due to force excitation at beam structure). Using these experimental data, the finite element model of the structure was tuned to provide similar results. With a first structural mode at less than 20 Hertz the reliable frequency range was identified up to about 60 Hertz. Obviously, the finite element model could not be further improved only by mesh refinement. The tuning process will be explained in detail since there was a number of changes that helped to improve the structure. Other changes did not improve the structure. Although this model of the box could be expected as a rather simple structure it can be considered to be a complex structure for simulation purposes. A defined modification of the physical model verified the simulation model. In a final step, the optimal location of stiffening beam structures was predicted by simulation. Their effect on the noise transfer function was experimentally verified. This paper critically discusses modeling techniques that are applied for structural-acoustic simulation of sedan bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, R. A., S. M. Niku, J. Baynham, and P. Burns: 1995, ‘Predicting acoustic contributions and sensitivity. Application to vehicle structures’. In: C. A. Brebbia (ed.): Computational Acoustics and its Environmental Applications, pp. 181–188, Computational Mechanics Publications.

    Google Scholar 

  • ANSYS: 1997, ‘ANSYS GUI Help Manual, ANSYS Release 5.4’. Swanson Analysis System Inc., Houston.

    Google Scholar 

  • Belegundu, A. D., R. R. Salagame, and G. H. Koopmann: 1994, ‘A general optimization strategy for sound power minimization’. Structural Optimization 8(2–3), 113–119.

    Article  Google Scholar 

  • Christensen, S. T. and N. Olhoff: 1998, ‘Shape optimization of a loudspeaker diaphragm with respect to sound directivity properties’. Control and Cybernetics 27(2), 177–198.

    MathSciNet  MATH  Google Scholar 

  • Constans, E. W., A. D. Belegundu, and G. H. Koopmann: 1998, ‘Design Approach for Minimizing Sound Power from Vibrating Shell Structures’. AIAA Journal 36(2), 134–139.

    Article  ADS  MATH  Google Scholar 

  • Crane, S. P., K. A. Cunefare, S. P. Engelstad, and E. A. Powell: 1997, ‘Comparison of design optimization formulations for minimization of noise transmission in a cylinder’. Journal of Aircraft 34(2), 236–243.

    Article  Google Scholar 

  • Cunefare, K. A., S. P. Crane, S. P. Engelstad, and E. A. Powell: 1999, ‘Design Minimization of Noise in Stiffened Cylinders Due to Tonal External Excitation’. Journal of Aircraft 36(3), 563–570.

    Article  Google Scholar 

  • Engelstad, S. P., K. A. Cunefare, E. A. Powell, and V. Biesel: 2000, ‘Stiffener Shape Design to Minimize Interior Noise’. Journal of Aircraft 37(1), 165–171.

    Article  Google Scholar 

  • Hambric, S. A.: 1995, ‘Approximation techniques for broad-band acoustic radiated noise design optimization problems’. Journal of Vibration and Acoustics 117(1), 136–144.

    Article  Google Scholar 

  • Hambric, S. A.: 1996, ‘Sensitivity calculations for broad-band acoustic radiated noise design optimization problems’. Journal of Vibration and Acoustics 118(7), 529–532.

    Article  Google Scholar 

  • Hibinger, F.: 1998, ‘Numerische Strukturoptimierung in der Maschinenakustik’. Dissertation, Technische Universität Darmstadt.

    Google Scholar 

  • Ihlenburg, F.: 1998, Finite Element Analysis of Acoustic Scattering, Vol. 132 of Applied Mathematical Sciences. Berlin Heidelberg New York: Springer Verlag.

    Book  Google Scholar 

  • Ishiyama, S.-L, M. Imai, S.-I. Maruyama, H. Ido, N. Sugiura, and S. Suzuki: 1988, ‘The application of ACOUST/BOOM — A noise level prediction and reduction code’. SAE-paper 880910 pp. 195–205.

    Google Scholar 

  • Kozukue, W., C. Pal, and I. Hagiwara: 1992, ‘Optimization of noise level Reduction by Truncated Model Coupled Structural-Acoustic Sensitivity Analysis’. Computers in Engineering (ASME) 2, 15–22.

    Google Scholar 

  • Lamancusa, J. S.: 1988, ‘Geometric Optimization of Internal Combustion Engine Induction Systems for Minimum Noise Transmission’. Journal of Sound and Vibration 127(2), 303–318.

    Article  ADS  Google Scholar 

  • Lamancusa, J. S.: 1993, ‘Numerical Optimization Techniques for Structural-Acoustic Design of Rectangular Panels’. Computers and Structures 48(4), 661–675.

    Article  MATH  Google Scholar 

  • Lamancusa, J. S. and H. A. Eschenauer: 1994, ‘Design Optimization Methods for Rectangular Panels with minimal sound radiation’. AIAA Journal 32(3), 472–479.

    Article  ADS  MATH  Google Scholar 

  • Marburg, S.: 2000, ‘Six elements per wavelength. Is that enough?’. Journal of Computational Acoustics, accepted for publication.

    Google Scholar 

  • Marburg, S.: 2001, ‘Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part I: Theory’. Structural and Multidisciplinary Optimization, accepted for publication.

    Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 1999, ‘A Study on the Acoustic Boundary Admittance. Determination, Results and Consequences’. Engineering Analysis with Boundary Elements 23, 737–744.

    Article  MATH  Google Scholar 

  • Marburg, S. and H.-J. Hardtke: 2001, ‘Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part II: Application to a vehicle dashboard’. Structural and Multidisciplinary Optimization, accepted for publication.

    Google Scholar 

  • Marburg, S., H.-J. Hardtke, R. Schmidt, and D. Pawandenat: 1997a, ‘An Application of the Concept of Acoustic Influence Coefficients for the Optimization of a Vehicle Roof’. Engineering Analysis with Boundary Elements 20(4), 305–310.

    Article  Google Scholar 

  • Marburg, S., H.-J. Hardtke, R. Schmidt, and D. Pawandenat: 1997b, ‘Design optimization of a vehicle panel with respect to cabin noise problems’. In: Proceedings of the NAFEMS World-Congress. Stuttgart, pp. 885–896.

    Google Scholar 

  • Naghshineh, K., G. H. Koopmann, and A. D. Belegundu: 1992, ‘Material Tailoring of Structures to Achieve a Minimum Radiation Condition’. Journal of the Acoustical Society of America 92(2), 841–855.

    Article  ADS  Google Scholar 

  • Pal, C. and I. Hagiwara: 1993, ‘Dynamic Analysis of a Coupled Structural-Acoustic Problem. Simultaneous Multi-Modal Reduction of Vehicle Interior Noise Level by Combined Optimization’. Finite Elements in Analysis and Design 14, 225–234.

    Article  MATH  Google Scholar 

  • Pal, C. and I. Hagiwara: 1994, ‘Optimization of Noise Level Reduction by truncated modal coupled Structural-Acoustic Sensitivity Analysis’. JSME International Journal, Series C 37(2), 246–251.

    Google Scholar 

  • St. Pierre Jr. R. L. and G. H. Koopmann: 1995, ‘A Design Method for Minimizing the Sound Power Radiated from Plates by Adding Optimally Sized, Discrete Masses’. Journal of Mechanical Design 117, 243–251.

    Article  Google Scholar 

  • Tinnsten, M., B. Esping, and M. Jonsson: 1999, ‘Optimization of Acoustic Response’. Structural Optimization 18(1), 36–47.

    Article  Google Scholar 

  • van der Auweraer, H., W. Leurs, P. Mas, and L. Hermans: 2000, ‘Modal Parameter Estimation from Inconsistent Data Sets’. In: Proceedings of IMAC-XVIII: A Conference on Structural Dynamics. San Antonio, Texas, pp. 763–771, Society for Experimental Mechanics Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Beer, HJ., Gier, J., Hardtke, HJ., Marburg, S., Perret, F., Rennert, R. (2002). An Experimental Verification of Structural-Acoustic Modeling and Design Optimization. In: Munjal, M.L. (eds) IUTAM Symposium on Designing for Quietness. Solid Mechanics and Its Applications, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0095-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0095-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6081-5

  • Online ISBN: 978-94-017-0095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics