Inconsistent Reasoning Toward Consistent Theories

Part of the Origins book series (ORIN, volume 2)


One of the most fascinating aspects of scientific creativity is how consistent theories can sometimes emerge from inconsistent premises or inappropriate data. Using cases from the history of science I will explore this process and try to draw some general lessons concerning how science is done and, more particularly, about the concept of scientific progress.


Coriolis Force Scientific Progress Consistent Theory Light Quantum Scientific Creativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, N. (1921), L’Application de la théorie des quanta aux problèmes atomiques. In Atomes et Electrons, Paris: Gauthier-Villars, pp. 228–247. (This is the proceedings of the 1921 Solvay Conference.)Google Scholar
  2. Bohr, N. (1928), The Quantum Postulate and the Recent Development of Atomic Theory. Nature (Supplement), 580–590. (This is a published version of Bohr’s lecture delivered on 16 September 1927 to the International Congress of Physics, Como, Italy.)Google Scholar
  3. Einstein, A. (1923), Fundamental Ideas and Problems of the Theory of Relativity. Nobel Lectures, Physics: 1901–1921, New York: Elsevier, pp. 479–490.Google Scholar
  4. Galilei, G. (1613/1957), Letters on Sunspots. In Discoveries and Opinions of Galileo, S. Drake (ed. and translater), New York: Doubleday.Google Scholar
  5. Galilei, G. (1632/1967), Dialogue Concerning the Two Chief World Systems—Ptolemaic & Copernican. Berkeley: University of California Press (translated by S. Drake).Google Scholar
  6. Michelson, A. A. and E. W. Morley (1887), On the Relative Motion of the Earth and Luminiferous Ether. American Journal of Science XXXIV, 333–345.Google Scholar
  7. Miller, A. I. (1981), Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911). Reading, MA: Addison-Wesley. Reprinted in 1998 by New York: Springer-Verlag.Google Scholar
  8. Miller, A. I. (1986), Imagery in Scientific Thought: Creating 20th-Century Physics. Cambridge: MIT Press.Google Scholar
  9. Miller, A. I. (1992), Imagery, Probability and the Roots of Werner Heisenberg’s Uncertainty Principle Paper. In Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics, A. I. Miller (ed.), New York: Plenum, pp. 3–15.Google Scholar
  10. Miller, A. I. (1994), Early Quantum Electrodynamics: A Source Book. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. Miller, A. I. (1996), Insights of Genius: Imagery and Creativity in Science and Art. New York: SpringerVerlag.CrossRefGoogle Scholar
  12. Planck, M. (1910), Zur Theorie der Wärmestrahlung, Annalen der Physik 31, 758–767.CrossRefGoogle Scholar
  13. Poincaré, H. (1900), La théorie de Lorentz et le principe de réaction. In Recueil de travaux offerts par les auteurs à H.A. Lorentz, The Hague: Nijhoff, pp. 252–278.Google Scholar
  14. Putnam, H. (1978), Meaning and the Moral Sciences. Boston: Routledge & Kegan Paul.Google Scholar
  15. Richardson, O. W. (1916), The Electron Theory of Matter. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.Department of Science & Technology StudiesUniversity College LonsonUK

Personalised recommendations