Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 97))

  • 757 Accesses

Abstract

A numerical model is presented for analysing cohesive cracks under both quasi-static and dynamic loadings. The displacement discontinuities across the cohesive crack are captured independently of the finite element mesh structure. This overcomes the difficulties associated with using finite elements when simulating propagating cohesive cracks. The model is derived in a consistent manner from the weak equation of motion, with minimal assumptions. The performance of the model is shown through examples under both quasi-static and impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • I. Babuska and J. M. Melenk. The Partition of Unity Method. Int. J. Numer. Meth. Engng., 40 (4): 727–758, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng., 45 (5): 601–620, 1999.

    Article  MATH  Google Scholar 

  • G. Chen, Y. Ohnishi, and T. Ito. Development of high-order manifold method. Int. J. Numer Meth. Engng., 43 (4): 685–712, 1998.

    Article  MATH  Google Scholar 

  • C. A. Duarte and J. T. Oden. H-p clouds —an h-p meshless method. Num. Methods Part. Diff. Eqns., 12 (6): 673–705, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  • N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng., 46 (1): 131–150, 1999.

    Article  MATH  Google Scholar 

  • J. T. Oden, C. A. M. Duarte, and O. C. Zienkiewicz. A new cloud-based hp finite element method. Comput. Methods Appl. Mech. Engrg., 153 (1–2): 117–126, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • E. Schlangen. Experimental and numerical analysis of fracture processes in concrete. PhD thesis, Delft University of Technology, 1993.

    Google Scholar 

  • L. J. Sluys and R. De Borst. Failure in plain and reinforced concrete — an analysis of crack width and crack spacing. Int. J. Solids & Structures, 33 (20–22): 3257–3276, 1996.

    Article  MATH  Google Scholar 

  • R. L. Taylor, O. C. Zienkiewicz, and E. Orate. A hierarchical finite element method based on the partition of unity. Comput. Methods Appl. Mech. Engrg., 152 (1–2): 73–84, 1998.

    Article  MathSciNet  ADS  Google Scholar 

  • M. G. A. Tijssens, L. J. Sluys, and E. Van der Giessen. Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. European J. Mech. A/Solids, 19 (5): 761–779, 2000.

    Article  ADS  MATH  Google Scholar 

  • J. Weerheijm. Concrete under impact tensile loading and lateral compression. PhD thesis, Delft University of Technology, 1992.

    Google Scholar 

  • G. N. Wells and L. J. Sluys. Discontinuous analysis of softening solids under impact loading. Int. J. Num. Anal. Meth. Geomechanics, 25 (7): 691–709, 2001.

    Article  MATH  Google Scholar 

  • G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using finite elements. Int. J. Milner Meth. Engng., 50 (12): 2667–2682. 2001.

    Article  MATH  Google Scholar 

  • G. N. Wells, R. De Borst, and L. J. Sluys. A consistent geometrically non-linear approach for delamination. Int. J. Numer Meth. Engng., 2001. (submitted).

    Google Scholar 

  • G. N. Wells. Discontinuous modelling of strain localisation and failure. PhD thesis, Delft University of Technology, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wells, G.N., de Borst, R., Sluys, L.J. (2002). Analysis of Cohesive Cracks Under Quasi-Static and Dynamic Loading. In: Karihaloo, B.L. (eds) IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials. Solid Mechanics and Its Applications, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0081-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0081-8_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5977-2

  • Online ISBN: 978-94-017-0081-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics