Advertisement

Thesaural Relations in Information Retrieval

  • Martha Evens
Part of the Information Science and Knowledge Management book series (ISKM, volume 3)

Abstract

Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments.

Keywords

Information Retrieval Query Expansion Word Sense Information Retrieval System Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Salem, H. (1992). A Microcomputer Based Arabic Information Retrieval System with Relational Thesauri (Arabic-IRS). Doctoral dissertation, Illinois Institute of Technolog.Google Scholar
  2. Ahlswede, T. E. (1985). A linguistic string grammar for adjective definitions. In S. Williams (Ed.), Humans and Machines, 101–127. Norwood, NJ: Ablex.Google Scholar
  3. Ahlswede, T. E. (1992). Issues in the design of test data for lexical disambiguation by humans and machines. Proceedings of the Fourth Midwest Artificial Intelligence and Cognitive Science Conference, 112–116.Google Scholar
  4. Ahlswede, T. E. (1995). Word sense disambiguation by human informants. Proceedings of the Sixth Midwest Artificial Intelligence and Cognitive Science Conference, 83–87.Google Scholar
  5. Ahlswede, T. E., & Evens, M. (1988a). Generating a relational lexicon from a machine-readable dictionary. International Journal of Lexicography, 1, 214–237.CrossRefGoogle Scholar
  6. Ahlswede, T. E., & Evens, M. (1988b). Parsing vs. text processing in the analysis of dictionary definitions. 25th Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference, 217–224.Google Scholar
  7. Ahlswede, T. E., & Lorand, D. (1993). Word sense disambiguation by human subjects: Computational and psycholinguistic applications. Acquisition of Lexical Knowledge from Text: Proceedings of the ACL SIGLEX Workshop, 1–9.Google Scholar
  8. Ahlswede, T. E., Evens, M., Markowitz, J., & Rossi, K. (1986). Building a lexical database by parsing Webster’s Seventh Collegiate Dictionary. Advances in Lexicology: Proceedings of the University of Waterloo Centre for the New Oxford English Dictionary, 1986, 65–78.Google Scholar
  9. Ahlswede, T. E., Anderson, J., Evens, M., Li, S. M., Neises, J., Pin-Ngern, S., & Markowitz, J. (1988). Automatic construction of a phrasal thesaurus for an information retrieval system. Proceedings of RIAO88, 597–608.Google Scholar
  10. Al-Kharashi, I., & Evens, M. (1994). Words, stems, and roots in an Arabic retrieval system. Journal of the American Society for Information Science, 45, 548–560.CrossRefGoogle Scholar
  11. Alkhrisat, M. M. (1992). Structuring the Arabic lexicon and thesaurus with lexical-semantic relations. Midwest Arti icial Intelligence and Cognitive Science Conference, 117–121. Google Scholar
  12. Amsler, R. A. (1981). A taxonomy for English nouns and verbs. 19th Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference, 133–138.Google Scholar
  13. Apresyan, Y. D., Mel’cuk, I. A., & Zholkovsky, A. K. (1970). Semantics and lexicography: Towards a new type of unilingual dictionary. In F. Kiefer (Ed.), Studies in Syntax and Semantics, 1–33. Dordrecht: Reidel.Google Scholar
  14. Berlin, B., Breedlove, D., & Raven, P. (1966). Folk taxonomies and biological classification. Science, 154.3746, 273–275.CrossRefGoogle Scholar
  15. Byrd, R. J. (1989). Discovering relationships among word senses. Proceedings of the Fifth Annual Conference of the University of Waterloo Centre for the New Oxford English Dictionary, 67–79.Google Scholar
  16. Byrd, R. J., Calzolari, N., Chodorow, M., Klavans, J., Neff, M., & Rizk, O. (1987). Tools and methods for computational lexicology. Computational Linguistics, 13, 219–240.Google Scholar
  17. Calzolari, N. (1988). The dictionary and the thesaurus can be combined. In M. Evens (Ed.), Relational Models of the Lexicon, 75–96. Cambridge, UK: Cambridge University Press.Google Scholar
  18. Calzolari, N., & Picchi, E. (1988). Acquisition of semantic information from an online dictionary. Proceedings of the 12th International Conference on Computational Linguistics, 87–92.Google Scholar
  19. Calzolari, N., Baker, M., & Kruyt, Y. (Eds.). (1996). Towards a Network of European Reference Corpora. Linguistica Computazionale XI. Pisa: Giardini.Google Scholar
  20. Casagrande, J. B., & Hale, K. L. (1967). Semantic relations in Papago folk definitions. In D. Hymes & W. E. Bittle (Eds.), Studies in Southwestern Ethnolinguistics, 165–196. The Hague: Mouton.Google Scholar
  21. Church, K., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational Linguistics, 16, 22–29.Google Scholar
  22. Collins, A., & Loftus, E. (1975). A spreading activation theory of semantic processing. Psychological Review, 82, 407–428.CrossRefGoogle Scholar
  23. Evens, M., & Smith, R. N. (1978). A lexicon for a computer question-answering system. American Journal of Computational Linguistics, 4, 1–96.Google Scholar
  24. Fellbaum, C. (Ed.). (1998). Word Net: An Electronic Lexical Database. Cambridge, MA: MIT Press.Google Scholar
  25. Fox, E. A. (1981). Lexical relations: Enhancing effectiveness of information retrieval systems. SIGIR Forum, 15, 5–36.CrossRefGoogle Scholar
  26. Fox, E., Nutter, J. T., Ahlswede, T., Evens, M., & Markowitz, J. (1988). Building a large thesaurus for information retrieval. Proceedings of the Fifth Conference on Applied Natural Language Processing, 101–108.Google Scholar
  27. Fuji, H., & Croft, W. B. (1993). A comparison of indexing techniques for Japanese information retrieval. Proceedings of the Sixteenth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, 237–246.Google Scholar
  28. Harman, D. (Ed.) (1993-). The Text REtrieval Conference (TREC). [D. Harman (Ed.), TREC-1-TREC-4; D. Harman & E. Voorhees (Eds.), TREC-5-.] NIST Special Publication 500-207 (TREC-1), 500-215 (TREC-2), 500-225 (TREC-3), 500-236 (TREC-4), 500-238 (TREC-5), 500-240 (TREC-6), 500-242 (TREC-7), 500-246 (TREC-8), 500-249 (TREC-9). Gaithersburg, MD :National Institute of Standards and Technology. Available: <http://trec.nist.gov/pubs.html> [2001, October 9].Google Scholar
  29. Jang, M. G., Myaeng, S. H., & Park, S. Y. (1999). Using mutual information to resolve query translation ambiguities and query term weighting. 37thAnnual Meeting of the Association for Computational Linguistics: Proceedings of the Conference, 223–229.Google Scholar
  30. Jenkins, J. H. (1970). The 1952 Minnesota word association norms. In L. Postman & G. Keppel (Eds.), Norms of Word Association. 1–38. New York: Academic Press.Google Scholar
  31. Kekalainen, J., & Jarvelin, K. (1998). The impact of query structure and query expansion on retrieval performance. Proceedings of the 21st Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, 130–137. Melbourne, Australia.Google Scholar
  32. Lesk, M. (1987). Automatic sense disambiguation using machine-readable dictionaries: How to tell a pine cone from an ice cream cone. Proceedings of the Fifth International Conference on Systems Documentation, 24–26.Google Scholar
  33. Lin, W. H., & Evens, M. (1995). Statistical approaches to Chinese word segmentation. Proceedings ofMidwest Artificial Intelligence and Cognitive Science, 83–87.Google Scholar
  34. Mandala, R., Tokunaga, T., & Tanoka, H. (1999). Combining multiple evidence from different types of thesaurus for query expansion. Proceedings of the 22nd Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, 191–197.Google Scholar
  35. Mel’cuk, I. A., & Zholkovsky, A. K. (1988). The Explanatory-Combinatorial Dictionary. In M. Evens (Ed.), Relational Models of the Lexicon, 41–74. Cambridge, UK: Cambridge University Press.Google Scholar
  36. Miller, G. A. (1998). Nouns in Word Net. In C. Fellbaum (Ed.), Word Net: An Electronic Lexical Database, 23–46. Cambridge, MA: MIT Press.Google Scholar
  37. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1991). Word Net. International Journal of Lexicography, 4, 1–75.Google Scholar
  38. Minker, J., Wilson, G. A., & Zimmerman, B. H. (1972). An evaluation of query expansion by the addition of clustered terms for a document retrieval system. Information Storage and Retrieval, 8, 329–348.CrossRefGoogle Scholar
  39. Norman, D. (1976). Memory and Attention. New York: Wiley.Google Scholar
  40. Nutter, J. T., Fox, E., & Evens, M. (1990). Building a lexicon from machine-readable dictionaries for improved information retrieval. Literary and Linguistic Computing, 5, 129–138.CrossRefGoogle Scholar
  41. Pentheroudakis, J., & Vanderwende, L. (1993). Automatically identifying morphological relations in machine-readable dictionaries. Making Sense of Words: Proceedings of the Ninth Annual Conference of the UW Center for the New OED and Text Research, 75–88.Google Scholar
  42. Riegel, K. (1970). The language acquisition process: A reinterpretation of selected research findings. In L. R. Goulet & P. B. Baltis (Eds.), Lifespan Developmental Psychology, 357–359. New York; Academic Press.Google Scholar
  43. Ruge, G. (1999). Combining corpus linguistics and human memory models for automatic term association. In T. Strzalkowski (Ed.), Natural Language Information Retrieval, 75–98. Dordrecht: Kluwer.CrossRefGoogle Scholar
  44. Ruimy, N., Corazzari, O., Gola, E., Spanu, A., Calzolari, N., & Zampolli, A. (1998). European LE-PAROLE Project: The Italian Syntactic Lexicon. Proceedings of the First International Conference on Language Resources and Evaluation, 241–248.Google Scholar
  45. Russell, W., & Jenkins, J. R. (1954). The Complete Minnesota Norms for Responses to 100 Words on the Kent-Rosanoff Word Association Test. (Studies in the Role of Language in Behavior Technical Report No. 11.) Minneapolis: University of Minnesota, Department of Psychology.Google Scholar
  46. Salton, G. (1968). Automatic Information Organization and Retrieval. New York: McGraw-Hill.Google Scholar
  47. Salton, G. (1973). Comment on “An evaluation of query expansion by the addition of clustered terms for a document retrieval system.&#x201D; Computing Reviews, 14, 232.Google Scholar
  48. Sanderson, M., & Croft, B. (1999). Deriving concept hierarchies from text. Proceedings of the 22nd Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, 206–213.Google Scholar
  49. Sedelow, S. Y. (Ed.). (1973). Automated Language Analysis. Lawrence, KS: University of Kansas.Google Scholar
  50. Sedelow, S. Y. (1991). Exploring the terra incognita of whole language thesauri. Midwest Artificial Intelligence and Cognitive Science Conference, 108–111.Google Scholar
  51. Smeaton, A. (1999). Using NLP or NLP resources for information retrieval. In T. Strzalkowski (Ed.), Natural Language Information Retrieval, 99–112. Dordrecht: Kluwer.CrossRefGoogle Scholar
  52. Sparck Jones, K. (1971). Automatic Keyword Classification for Information Retrieval. London: Butterworths.Google Scholar
  53. Strzalkowski, T., Lin, F., Wang, J., & Perez-Caballo, J. (1999). Evaluating natural language processing techniques in information retrieval. In T. Strzalkowski (Ed.), Natural Language Information Retrieval, 113–145. Dordrecht: Kluwer.CrossRefGoogle Scholar
  54. Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. Proceedings of the Seventeenth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, 61–69.Google Scholar
  55. Voorhees, E. M. (1998). Using Word Net for text retrieval. In C. Fellbaum (Ed.), Word Net: An Electronic Lexical Database, 287–303. Cambridge, MA: MIT Press.Google Scholar
  56. Walker, D. E. & Amsler, R. A. (1986). The use of machine-readable dictionaries in sublanguage analysis. In R. Grishman & R. Kittredge (Eds.) Analyzing Language in Restricted Domains, 69–83. Hillsdale, NJ: Erlbaum.Google Scholar
  57. Wan, T. L., Evens, M., Wan, Y. W., & Pao, Y. Y. (1997). Experiments with automatic indexing and a relational thesaurus in a Chinese information retrieval system. Journal of the American Society for Information Science, 48, 1086–1096.CrossRefGoogle Scholar
  58. Wang, G. N., Evens, M., & Hier, D. (1993). Query enhancement with relational thesauri. Proceedings of the Seventh Annual Midwest Computer Conference, 63–68.Google Scholar
  59. Wang, Y. C., Vandendorpe, J., & Evens, M. (1985). Relational thesauri in information retrieval. Journal of the American Society for Information Science, 36, 15–27.Google Scholar
  60. Weaver, F. (Ed.). (1992). Computers and Mathematics with Applications (special issue on relational models), 23, 6–9.Google Scholar
  61. Wu, Z., & Tseng, G. (1995). ACTS: An automatic Chinese text segmentation system for full text retrieval. Journal of the American Society for Information Science, 46, 83–96.CrossRefGoogle Scholar
  62. Zhou, J. (1999). Phrasal terms in real-world IR applications. In T. Strzalkowski (Ed.), Natural Language Information Retrieval. 215–257. Dordrecht: Kluwer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Martha Evens
    • 1
  1. 1.Department of Computer ScienceIllinois Institute of TechnologyChicagoUSA

Personalised recommendations