Skip to main content

Heterosis in crop mutant crosses and production of high yielding lines using doubled haploid systems

  • Chapter
  • 209 Accesses

Summary

Heterosis appearing in crosses between mutants derived from the same parent variety and crosses of mutants with parent varieties has been observed by many authors for many plant species including such important crops as barley, faba bean, maize, pea, pearl millet, rice, sunflower, sesame, sweet clover, triticale and wheat. Mutant heterosis was reported for crosses of spontaneous mutants, mutants obtained after treatment with various mutagens and recently also for somaclonal variants. The heterotic effects are usually related to an increase in some yield components. There is a lack of correlation between mutation of a particular plant character and appearance of heterotic effect. The yielding performance of a mutant was not correlated with its potential to give yield heterosis in crosses with another mutant, often also a very poor one, or with the parent variety. Poor yielding barley mutants from the collection of semi-dwarf forms of the Department of Genetics, Silesian University gave heterosis in crosses with other mutants or parent varieties for such characters as tillering, grain number and weight per plant. In addition to mutants with deleterious mutations of such characters as chlorophyll synthesis or fasciated stem there were also lines mutated for earliness, semi-dwarfness, low glucoside or high protein and lysine content which gave significant heterosis in crosses. One possible explanation of the phenomenon of mutant heterosis is related to the frequency of mutations induced by chemical and physical mutagens. The appearance and the level of heterotic effect of mutated genes will depend on their interaction with other mutated genes or with genes from the parental genotype. High specific combining ability of mutants giving heterotic effect makes hybrid seed production, based on crosses with defined sources of cytoplasmic or genetic male sterility, unfeasible or even impossible. Doubled haploids provide a unique system to attempt the `fixing’ of hybrid performance in homozygous lines and to avoid the step of hybrid seed production. The assumption on the ‘fixability’ of hybrid yield in homozygous lines based on reports that large additive genetic variance is responsible for yield heterosis in wheat or barley was proven also for mutant crosses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aastveit, K., 1964. Heterosis and selection in barley. Genetics. 49: 159–164

    PubMed  CAS  Google Scholar 

  • Anandakumar, C.R. and S.R. Sree Rangasamy, 1995. Heterosis and selection indices in rice. Egypt. J.Genet. Cytol. 14: 123–132

    Google Scholar 

  • Ba Bong, B. and M.S. Swaminathan, 1995. Magnitude of hybrid vigour retained in double haploid lines of some heterotic rice hybrids. Theor.Appl.Genet. 90: 253–257

    Google Scholar 

  • Barbosa-Neto, J.F., M.E. Sorrells, and G. Cisar, 1996. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome. 39: 1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Bohn, M., H.F. Utz, and A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228–237

    Article  CAS  Google Scholar 

  • Bush, R.H., A. Lucken, and R.C. Frohberg, 1971. F1 hybrids versus random F5 line performance and estimates of genetic effects in spring wheat. Crop Sci. 11: 357–361

    Article  Google Scholar 

  • Cerna, F.J., S.R. Cianzio, A. Rafalski, S. Tingey, and D. Dyer, 1997. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean. Theor.Appl.Genet. 95: 460–467

    Article  CAS  Google Scholar 

  • Chopra, K., 1996. Global assessment of hybrid rice technologies for breeding and seed production. In: Proceedings of the 18th Session of the International Rice Commission. Tran, D.V. (Ed.) FAO, Rome. pp. 23–36

    Google Scholar 

  • Chowdari, K.V., S.R. Venkatachalam, A.P. Davierwala, V.S. Gupta, P.K. Ranjekar, and O.P. Govila, 1998. Hybrid performance and genetic distance as revealed by the (GATA)4 microsatellite and RAPD markers in pearl millet. Theor.Appl.Genet. 97: 163–169

    Article  CAS  Google Scholar 

  • Doll, H., 1966. Yield and variability of chlorophyll-mutant heterozygotes in barley. Hereditas. 56: 256276

    Google Scholar 

  • Dollinger, E.J., 1983. Effects of visible recessive alleles on vigor characteristics in a maize hybrid. Crop Sci. 25: 819–821

    Article  Google Scholar 

  • Dudley, J.W., M.A. Saghai Maroof, and G.K. Rufener, 1991. Molecular markers and grouping of parents in maize breeding programs. Crop Sci. 31: 718–723

    Article  Google Scholar 

  • Durneva, G.N., I.I. Ulitcheva, Y.D. Beletskii, and E.P. Gus’kov, 1994. Influence of a mutant plastom on the expression of morphological and physiological traits of sunflower hybrids. Russian J. Genet. 30 (4): 437–443

    Google Scholar 

  • Gale, M.D., A.M. Salter, F.C. Curtis, and W.J. Angus, 1988. The exploitation of the Tom Thumb dwarfing gene, Rht3, in F1 hybrid wheats. In: Semi-dwarf Cereal Mutants and Their Use in Cross-Breeding III. IAEA, Vienna. pp. 57–68

    Google Scholar 

  • Gorny, A. (1977) Chemomutanty Petunia axillaris (Lam.) B.S.P. Silesian University, Katowice. Gottschalk, W., 1976. Monogenic heterosis. In: Induced Mutations in Cross-Breeding. IAEA, Vienna. pp. 189–197

    Google Scholar 

  • Grzesik, H., 1995. Studies on dwarf mutants of winter triticale (X Triticosecale Witt.). Part II. Effect of heterosis in F1 hybrids of winter triticale Hod.Rosl.Aklim.Nasien. 39(3): 21–39 (in Polish with English summary)

    Google Scholar 

  • Gupta, H.S., R.N. Bhuyan, A. Pattanayak, and D.K. Pandey, 1996. Development of cold-tolerant rice through anther culture. IRRN. 21 (1): 20

    Google Scholar 

  • Gustafsson, A., 1946. The effect of heterozygosity on viability and vigour. Hereditas. 32: 263–286

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, A., 1947. The advantageous effect of deleterious mutations. Hereditas. 33: 573–575

    Google Scholar 

  • Gustafsson, A. and I. Dormling, 1972. Dominance and overdominance in phytptron analysis of monohybrid barley. Hereditas. 70: 185–216

    Article  Google Scholar 

  • Gustafsson, A., I. Dormling, and G. Ekman, 1973. Phytotron ecology of mutant genes. I. Heterosis in mutant crossings of barley. Hereditas. 74: 119–126

    Article  Google Scholar 

  • Gustafsson, A., N. Nybom, and U. von Wettstein, 1950. Chlorophyll factors and heterosis in barley. Hereditas. 36: 383–392

    Article  Google Scholar 

  • Hagberg, A., 1953. Heterozygosity in erectoides mutations in barley. Hereditas. 39: 161–178

    Article  Google Scholar 

  • Hoballah, A.A., 1999. Selection and agronomic evaluation of induced mutant lines of sesame. In:

    Google Scholar 

  • Induced Mutations for Sesame Improvement. IAEA-TECDOC-. IAEA, Vienna. pp.71–84 Jones, D.F., 1945. Heterosis resulting from degenerative changes. Genetics. 30: 527–542

    Google Scholar 

  • Kasha, K.J., L.S.P. Song, S.J. Park, and E. Reinbergs, 1977. Fixation of heterosis: comparison of F1 hybrids with their respective homozygous lines developed using doubled haploid procedures. Cereal Res.Commun. 5 (3): 205–214

    Google Scholar 

  • Kaul, M.L.H., 1980. Radiation genetics studies in garden pea. 9. Non-allelism of early flowering mutants and heterosis. Z.Pflanzenzüchtg. 84: 192–200

    Google Scholar 

  • Kawai, T., 1967. New crop varieties bred by mutation breeding. Jpn.Agric.Res.Q. 2: 8–12

    Google Scholar 

  • Konzak, C.F., 1989. Exploitation and analysis of heterosis in wheat with induced mutations. In: Current Options for Cereal Improvement. Maluszynski, M. (Ed.) Kluwer Academic Publishers, Dordrecht. pp. 97–113

    Chapter  Google Scholar 

  • Lightner, J., G. Pearce, C.A. Ryan, and J. Browse, 1993. Isolation of signaling mutants of tomato (Lycopersicum esculentum). Mol.Gen.Genet. 241: 595–601

    Article  PubMed  Google Scholar 

  • Lönnig, W.-E., 1982. Dominance, overdominance and epistasis in Pisum sativum L. Theor.Appl.Genet. 63: 255–264

    Article  Google Scholar 

  • Maluszynski, M., 1982. The high mutagenic effectiveness of MNUA in inducing a diversity of dwarf and semi-dwarf forms of spring barley. Acta Soc.Bot.Polon. 51: 429–440

    CAS  Google Scholar 

  • Maluszynski, M., A. Fuglewicz, 1. Szarejko, and A. Micke, 1989. Barley mutant heterosis. In: Current Options for Cereal Improvement. Doubled Haploids, Mutants and Heterosis. Kluwer Academic Publisher, Dordrecht. pp. 129–146

    Google Scholar 

  • Maluszynski, M., A. Micke, B. Sigurbjörnsson, I. Szarejko, and A. Fuglewicz, 1987. The use of mutants for breeding and for hybrid barley. In: Barley Genetics V. Yasuda, S. and T. Konishi (Eds.)Okayama. pp. 969–977

    Google Scholar 

  • Manjarrez-Sandoval, P., T.E. Jr. Carter, D.M. Webb, and J.W. Burton, 1997. Heterosis in soybean and its prediction by genetic similarity measures. Crop Sci. 37: 1443–1452

    Article  Google Scholar 

  • Marburger, J.E. and R.R.C. Wang, 1988. Anther culture of some perennial triticeae. Plant Cell Rep. 7: 313–317

    Article  Google Scholar 

  • Martin, J.M., L.E. Talbert, S.P. Lanning, and N.K. Blake, 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci. 35: 104–108

    Article  Google Scholar 

  • Melchinger, A.E., M. Lee, K.R. Lamkey, and W.L. Woodman, 1990. Genetic diversity for restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci. 33: 944–950

    Google Scholar 

  • Micke, A., 1969. Improvement of low yielding sweet clover mutants by heterosis breeding. In: Induced Mutations in Plants. IAEA, Vienna. pp. 541–550

    Google Scholar 

  • Micke, A., 1976. Hybrid vigour in mutant crosses. Prospects and problems of exploitation studied with mutants of sweet clover. In: Induced Mutations in Cross-Breeding. IAEA, Vienna. pp. 199–218

    Google Scholar 

  • Murty, G.S.S., 1979. Heterosis in inter-mutant hybrids of Sesamum indicum L. Curr.Sci. 48 (18): 825–827

    Google Scholar 

  • Nybom, N., 1950. Studies on mutations in barley. I. Superdominant factors for internode length. Hereditas. 36: 321–328

    Article  Google Scholar 

  • Pasztor, K., P. Pepo, and K. Egri, 1985. Changes in the production of maize hybrids due to mutant parent lines. Acta.Agron.Acad.Hungar. 34 (1–2): 189–195

    Google Scholar 

  • Pathak, R.S., 1991. Genetic evaluation of two aphid resistant cowpea mutants in Kenya. In: Plant Mutation Breeding for Crop Improvement. Vol. 2. IAEA, Vienna. pp. 241–247

    Google Scholar 

  • Perenzin, M., M. Corbellini, M. Accerbi, P. Vaccino, and B. Borghi, 1998. Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica. 100: 273–279

    Article  Google Scholar 

  • Polok, K., I. Szarejko, and M. Maluszynski, 1997. Barley mutant heterosis and fixation of ‘F, -performance in doubled haploid lines. Plant Breed. 116: 133–140

    Article  Google Scholar 

  • Rai, K.N., D.J. Andrews, and A.S. Rao, 1986. Hybrid potential of 81A–a dwarf male-sterile line of pearl millet. Indian J.Genet. 46 (2): 295–303

    Google Scholar 

  • Rybtsov, S.A., T.A. Ezhova, and S.A. Gostimskii, 1997. Use of in vitro tissue culture to study heterosis in the pea. Russian J.Genet. 33 (11): 1299–1303

    CAS  Google Scholar 

  • Saeed Iqbal, R.M., M.B. Chaudhry, M. Aslam, and A.A. Bandesha, 1991. Economic and Agricultural impact of mutation breeding in cotton in Pakistan. In: Plant Mutation Breeding for Crop Improvement. Vol. 1. IAEA, Vienna. pp. 187–201

    Google Scholar 

  • Saghai Maroof, M.A., G.P. Yang, Z. Qifa, and K.A. Gravois, 1997. Correlation between molecular marker distance and hybrid performance in U.S. southern long grain rice. Crop Sci. 37: 145–150

    Article  Google Scholar 

  • Sarawat, P., F.L. Stoddard, and D.R. Marshall, 1994. Derivation of superior F5 lines from heterotic hybrids in pea. Euphytica. 73: 265–272

    Article  Google Scholar 

  • Shen, Y., Q. Cai, M. Gao, and Z. Liang, 1995. Isolation and genetic characterization of somaclonal mutants with large-sized grain in rice. Cereal Res.Commun. 23 (3): 235–241

    Google Scholar 

  • Shen, Y., M. Gao, and Q. Cai, 1994. A novel environment-induced genic male sterile (EGMS) mutant in indica rice. Euphytica. 76: 89–96

    Article  Google Scholar 

  • Smith, O.S., J.S.C. Smith, S.L. Bowen, R.A. Tenborg, and S.J. Wall, 1990. Similarities among a group of elite maize inbreds as measured by pedegree, F1 grain yield heterosis and RFLPs. Theor. Appl. Genet. 80: 833–840

    Article  Google Scholar 

  • Spiss, L. and H. Goral, 1990. Effect of heterosis in hybrids with dwarf mutants of triticale. Hod. Rosl.Aklim.Nasien. 34 (3/4): 33–37

    Google Scholar 

  • Stelling, D., 1997. Heterosis and hybrid performance in topless faba beans (Vicia faba L.). Euphytica. 97: 73–79

    Article  Google Scholar 

  • Stoilov, M. and S. Daskaloff, 1976. Some results on the combined use of induced mutations and heterosis breeding. In: Induced Mutations in Cross-Breeding. IAEA, Vienna. pp. 179–188

    Google Scholar 

  • Stubbe, H. and K. Pirschle, 1940. Über einen monogen bedingten Fall von Heterosis bei Antirrhinum majus. Ber.Deutsche.Bot.Ges. 58: 546–558

    Google Scholar 

  • Suenaga, K., 1994. Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull.Natl.Inst.Agrobiol.Resour. 9: 83–139

    CAS  Google Scholar 

  • Szarejko, I. and M. Maluszynski, 1999. High frequency of mutations after mutagenic treatment of barley seeds with Na N3 and MNH with application of interincubation germination period. MBNL. 44

    Google Scholar 

  • Upadhyaya, B.R. and D.C. Rasmusson, 1967. Heterosis and combining ability in barley. Crop Sci. 7: 644–647

    Article  Google Scholar 

  • Xiao, J., J. Li, L. Yuan, S.R. McCouch, and S.D. Tanksley, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor.Appl.Genet. 92: 637–643

    Article  CAS  Google Scholar 

  • Xiao, J., J. Li, L. Yuan, and S.D. Tanksley, 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 140: 745–754

    PubMed  CAS  Google Scholar 

  • Xu, M., 1988. The hereditary tendency of characters in F, generation of wheat crosses with mutants. Acta Agri.Nucl. S inica. 2 (1): 5–12

    Google Scholar 

  • Yap, T.C. and B.L. Harvey, 1971. Heterosis and combining ability of barley hybrids in densely and widely seeded conditions. Can.J.Plant Sci. 51: 115–122

    Article  Google Scholar 

  • Zhang, Q., Z.Q. Zhou, G.P. Yang, C.G. Xu, K.D. Liu, and M.A. Saghai Maroof, 1996. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor.Appl.Genet. 93: 1218–1224

    Article  Google Scholar 

  • Zinovatnaya, G.N., I.I. Ulitcheva, and E.P. Gus’kov, 1995. Combining ability of sunflower plastom mutant lines and expression of heterosis for quantitative traits in intermutant hybrids. Russian J.Genet. 31 (12): 1423–1429.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maluszynski, M., Szarejko, I., Barriga, P., Balcerzyk, A. (2002). Heterosis in crop mutant crosses and production of high yielding lines using doubled haploid systems. In: Maluszynski, M., Kasha, K.J. (eds) Mutations, In Vitro and Molecular Techniques for Environmentally Sustainable Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9996-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9996-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6012-9

  • Online ISBN: 978-94-015-9996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics