Skip to main content

Summary

Many spontaneous and a large number of induced mutants that show altered nodulation pattern have been isolated in pea, soybean, common bean, faba bean, chickpea, groundnut and pigeonpea. Available information on nodulation mutants in these crops is summarised. The importance of nodulation mutants in basic studies on plant-microbe symbiotic interactions, nitrogen fixation and breeding of cultivars with higher yield and nitrogen fixation rate are examined. The nodulation mutants, after inoculation with specific bacterial strains or a number of different strains, show either: no nodulation (nod−), few nodules (nod+/−), ineffective nodulation (fix−), hyper nodulation (nod++) or hypernodulation even in the presence of otherwise inhibitory nitrate levels (nts). No spontaneous hypernodulation or nts mutants have been found, all have been induced in independent experiments using different cultivars of pea, soybean and common bean after mutagenising seeds. Most nodulation mutants show monogenic recessive inheritance, though semi-dominant and dominant inheritance is also reported. Nodule number is controlled by a process known as autoregulation; hypernodulating mutants show relaxed autoregulation. By grafting shoots of hypernodulating soybean mutant on normal nodulating soybean, mungbean and hyacinth bean, presence of a common, translocatable signal has been shown. Nodulation mutants have contributed to the understanding of the genetic regulation of hostsymbiont interactions, nodule development and N fixation. Initially, the hypernodulating mutants were found to be poor in yield. Using the induced hypernodulating mutant, a new soybean cultivar ‘Nitrobean 60’, has been released in Australia. This cultivar is reported to have given 15% higher yield over cv. ‘Bragg,’ and contributed a higher amount of fixed N to the following cereal crop in rotation. Prospects of using the nodulation mutants in developing grain legume cultivars that combine high yield with high residual N, within the bioenergetic constraints, for developing sustainable cropping systems are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon., 1984. Breeding Legumes for Enhanced Symbiotic Nitrogen Fixation. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  • Anon., 1994. Nuclear Techniques in Soil Plant Studies for Sustainable Agriculture and Environment Preservation. IAEA, Vienna

    Google Scholar 

  • Anon., 1997. Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture. Springer Verlag, Berlin

    Google Scholar 

  • Anon., 1997. List of new mutant cultivars; Glycine max L. (soybean). MBNL. 43: 44–45

    Google Scholar 

  • Anon., 1997. Sustainable Agriculture for the Tropics: the Role of Biological Nitrogen Fixation. Elsevier Science Ltd.

    Google Scholar 

  • Anon., 1999 Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems. Kluwer Academic Publishers

    Google Scholar 

  • Abu-Shakra, S.S., D.A. Phillips, and R.C. Huffaker, 1978. Nitrogen fixation and delayed leaf senescence in soybeans. Science. 199: 973–975

    Article  PubMed  CAS  Google Scholar 

  • Akao, S. and H. Kouchi, 1992. A supernodulating mutant isolated from soybean cultivar Enri. Soil Sci.and Plant Nutr. 38: 183–187

    Article  Google Scholar 

  • Albrecht, C., R. Geurts, and F. Lapeyrie, 1998. Endomycorrhizae and rhizobial Nod factors both require sym8 to induce the expression of the early noduling genes PsENODS and PsENODI2A. The Plant J. 15: 695–614

    Article  Google Scholar 

  • Ali, M., 1999. Evaluation of green manure technology in tropical lowland rice system. Field.Crops Res. 61: 61–78

    Article  Google Scholar 

  • Atkins, C.A., 1984. Efficiences and inefficiencies in the legume/Rhizobium symbiosis–a review. Plant and Soil. 82: 273–284

    Article  CAS  Google Scholar 

  • Atkins, C.A., J.S. Pate, G.J. Griffiths, and S. T. White, 1980. Economy of carbon and nitrogen in nodulated and non-nodulated NO3 grown cowpea (Vigna unguiculata (L.) Walp.). Plant Physiol. 66: 978–983

    Article  PubMed  CAS  Google Scholar 

  • Atkins, C.A., J.S. Pate, and D.B. Lyzell, 1979. Assimilation and transport of nitrogen in nonnodulated (NO3 grown) Lupinus albus L. Plant Physiol. 64: 1078–1082

    Article  PubMed  CAS  Google Scholar 

  • Bacananamwo, M. and J.E. Harper, 1997. Response of a hypernodulating soybean mutant to increased photosynthate supply. Plant Sci. 124: 119–129

    Article  Google Scholar 

  • Bantilan, M.C.S. and C. Johansen, 1995. Research evaluation and impact of biological nitrogen fixation. Plant and Soil. 174: 279–286

    Article  CAS  Google Scholar 

  • Bhatia, C.R., K. Nichterlein, L. van Zanten, and M. Maluszynski, 1999. Grain legume cultivars developed using induced mutations. Mut.Breed.Rev. 11

    Google Scholar 

  • Boddey, R.M., J.C. de Moraes Sa, J. Bruno, R. Alves, and S. Urquiaga, 1997. The contribution of biological nitrogen fixation for sustainable agriculture systems in the tropics. Soil Biol. Biochem. 29: 787–799

    CAS  Google Scholar 

  • Borisov, A.Y., E.V. Morzhina, O.A. Kulikova, S.A. Tchetkova, V.K. Lebsky, and I. A. Tikhonovich, 1992. New symbiotic mutants of pea (Pisum sativum L.) affecting either nodule initiation or symbiosome development. Symbiosis (Rehovot). 14: 297–313

    Google Scholar 

  • Borisov, A.Y., S.M. Rozov, V.E. Tsyganov, O.A. Kulikova, A.N. Kolycheva, L.M. Yakobi, A.O. Ovtsyna, and I.A. Tikhonovich, 1994. Identification of symbiosis genes in pea (Pisum sativum L.) by means of induced mutagenesis. Genetika. 30: 1484–1494

    Google Scholar 

  • Branch, W.D., 1997. Registration of Georgia Non-Nod peanut genetics stock. Crop Sci. 37: 1412

    Article  Google Scholar 

  • Brevin, N.J., 1991. Development of legume root nodule. Annu. Rev. Cell Biol. 7: 191–226

    Article  Google Scholar 

  • Buttery, B.R. and R.I. Buzzell, 1998. Inheritance of autoregulation mutants in Elgin soybean resulting in supernodulation phenotypes. Soybean Genet. Newsl. 25: 25–26

    Google Scholar 

  • Buzzell, R.I., B.R. Buttery, and G. Ablett, 1990. Supernodulation mutants in Elgin soybean. In: Nitrogen Fixation: Achievements and Objectives. Gresshoff, P.M., L.E. Roth, G. Stacey and W.E. Newton (Eds.) Chapman and Hill, New York. pp. 726.

    Google Scholar 

  • Caetano-Anolles, G. and P.M. Gresshoff, 1991. Plant genetic control of nodulation. Annu. Rev. Microbiol. 45: 345–382

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles, G. and P.M. Gresshoff, 1996. Advances in positional cloning of nodulation genes in soybean. Plant and Soil. 186: 1–7

    Article  CAS  Google Scholar 

  • Caldwell, B.E., 1966. Inheritance of a strain specific ineffective nodulation in soybean. Crop Sci. 6: 427–428

    Article  Google Scholar 

  • Caldwell, B.E., K. Hinson, and K. Johnson, 1966. A strain-specific ineffective nodulation reaction in the soybean (Glycine max L. Merrill). Crop Sci. 6: 495–496

    Article  Google Scholar 

  • Caroll, B.J., P.M. Gresshoff, and A.C. Delves, 1988. Inheritance of supernodulation in soybean and estimation of genetically effective cell number. Theor. Appl. Genet. 76: 5458

    Google Scholar 

  • Caroll, B.J. and A. Mathews, 1990. Nitrate inhibition of nodulation in legumes. In: Molecular Biology of Symbiotic Nitrogen Fixation. Gresshoff, P. (Ed.) CRC Press, Boca Raton. pp. 159–180

    Google Scholar 

  • Caroll, B.J., D.L. McNeil, and P.M. Gresshoff, 1985. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl. Acad. Sci. USA. 82: 4162–4166

    Article  Google Scholar 

  • Caroll, B.J., D.L. McNeil, and P. M. Gresshoff, 1986. Mutagenesis of soybean (Glycine max (L.) Merr.) and isolation of non-nodulating mutants. Plant Sci. 47: 109–114

    Article  Google Scholar 

  • Cho, M.J. and J.E. Harper, 1991. Root isoflavonoid response to grafting between wild-type and nodulation mutant soybean plants. Plant Physiol. 96: 1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Danso, S.K.A., 1995. Sustainable agriculture: the role of biological nitrogen fixing plants. In: Nuclear Techniques in Soil Plant Studies for Sustainable Agriculture and Environment Preservation. IAEA, Vienna. pp. 205–224

    Google Scholar 

  • Davis, T.M., 1988. Two genes that confer ineffective nodulation in chickpea (Cicer arietinum L.). J. Hered. 79: 476–478

    Google Scholar 

  • Davis, T.M., 1991. Linkage relationships of genes for leaf morphology flower color and root nodulation in chickpea. Euphytica. 54: 117–124

    Article  Google Scholar 

  • Davis, T.M., K.W. Foster, and D.A. Phillips, 1985. Nonnodulation mutants in chickpea. Crop Sci. 25 (345): 348

    Google Scholar 

  • Davis, T.M., K.W. Foster, and D.A. Phillips, 1986. Inheritance and expression of three genes controlling root nodule formation in chickpea. Crop Sci. 26: 719–723

    Article  Google Scholar 

  • Day, D.A., B.J. Carroll, A.C. Delves, and P.M. Gresshoff, 1989. Relationship between autoregulation and nitrate inhibition of nodulation in soybeans. Physiol. Plant. 75: 37–42

    Article  CAS  Google Scholar 

  • Delves, A.C., A. Mathew, D.A. Day, A.S. Garter, B.J. Caroll, and P.M. Gresshoff, 1986. Regulation of soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol. 82: 588–590

    Article  PubMed  CAS  Google Scholar 

  • Denaire, J., F. Debelle, and C. Rosenberg, 1992. Signalling and host range variation in nodulation. Ann. Rev. Microbiol. 46: 497–531

    Article  Google Scholar 

  • Devine, T.E., 1984. Inheritance of soybean nodulation response with a fast growing strain of Rhizobium. J. Hered. 75: 359–361

    Google Scholar 

  • Devine, T.E. and L.D. Kuykendall, 1996. Host genetic control of symbiosis in soybean (Glycine max L.). Plant and Soil. 186: 173–187

    Article  CAS  Google Scholar 

  • Djordjevic, M.A., D.W. Gabriel, and B.G. Rolfe, 1987. Rhizobium, the refined parasite of legumes. Annu. Rev. Phytopathol. 25: 145–168

    Google Scholar 

  • Dobereiner, J., 1997. Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol. Biochem. 29: 771–774

    Google Scholar 

  • Duc, G., 1995. Mutagenesis of faba bean (Vicia faba L.) and the identification of five different genes controlling no nodulation, ineffective nodulation or super nodulation. Euphytica. 83: 147–152

    Article  Google Scholar 

  • Dumas-Gaudot, E., A. Asselin, V. Gianinazzi-Pearson, A. Gollotte, and S. Gianinazzi, 1994. Chitinase isoforms in the roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci. 99: 27–37

    Article  CAS  Google Scholar 

  • Dutta, M. and L.J. Reddy, 1988. Further studies on genetics of nonnodulation in peanut. Crop Sci. 28: 60–62

    Article  Google Scholar 

  • Engvild, K.C., 1987. Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor. Appl. Genet. 74: 711–713

    Article  Google Scholar 

  • Esser-Monning, K., P. Roskothen, and G. Röbbelen, 1995. Two host genes in Vicia faba for nodulation deficiency with strain specificity for Rhizobium leguminosarum. Plant Breed. 114: 363–365

    Article  Google Scholar 

  • Fearn, J.C., F.C. Guinel, and T.A. LaRue, 1992. Ethylene antagonists increase nodulation on sym5 pea mutants. In: Proc.14th Intern. Conf. Plant Growth Substances, Amsterdam. Kluwer Academic Publishers, Dordrecht. pp. 530–533

    Google Scholar 

  • Francisco, P.B. Jr. and J.E. Harper, 1995. Translocatable leaf signal autoregulates soybean nodulation. Plant Sci. 107: 297–311

    Article  Google Scholar 

  • Freiberg, C., R. Fellay, A Bairoch, W. J Broughton, A. Rosenthal, and X. Perret, 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 387: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Fried, M., 1995. Biological nitrogen fixation: present and future. In: Nuclear Techniques in Soil Plant Studies for Sustainable Agriculture and Environment Preservation. IAEA, Vienna. pp. 199–204

    Google Scholar 

  • Gelin, O. and S. Blixt, 1964. Root nodulation in peas. Agri. Hortique Genetica. 22: 149–159

    Google Scholar 

  • Geurts, R., R. Heidstra, A.E. Hadri, S.R. Downie, H. Franssen, A. Van Kammen, and T. Bisseling, 1997. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in epidermis. Plant Physiol. 115: 351–359

    PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson, V., S. Gianinazzi, J.P. Guillemin, A. Trouvelot, and G. Duc, 1991. Genetic and cellular analysis of resistance to vesicular-arbuscular (VA) mycorrhizal fungi in pea mutants. In: Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. I. Hennecke, H. and D.P.S. Verma (Eds.) Kluwer Academic Publishers, Dordrecht. pp. 336–342

    Google Scholar 

  • Gorbet, D.W. and J.C. Burton, 1979. A non nodulating peanut. Crop Sci. 19: 727–728

    Article  Google Scholar 

  • Gremaud, M.F. and J.E. Harper, 1989. Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol. 89: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Gresshoff, P.M., 1993. Molecular genetic analysis of nodulation genes in soybean. Plant Breed. Rev. 11: 275–318

    Google Scholar 

  • Gresshoff, P.M., J. Stiller, Q. Jiang, A. Hussain, D. Lohar, C.A. Vasile, I.L. Anderssen, C. Zaharia, M. Appel, K. Harada, I. Searle, M. Bhattacharrya, K. Meksem, D. Lightfoot, M. Spencer, B. Aroll, and A. Men, 1999. Functional genomics and genetic analysis of nodulation and lateral root development of soybean and Lotus japonicus. Symbiosis (Rehovot) (in press)

    Google Scholar 

  • Guniel, F.C. and T.A. LaRue, 1990. Formation of wall appositions in leaves and lateral roots of an iron-accumulating pea mutant. Can.J.Bot. 68: 1340–1348

    Article  Google Scholar 

  • Guniel, F.C. and T.A. LaRue, 1992. Ethylene inhibitors partly restore nodulation of pea mutant E107(brz). Plant Physiol. 99: 515–518

    Article  Google Scholar 

  • Hamaguchi, H., M. Kokubun, T. Yoneyama, A.P. Hansen, and S. Akao, 1993. Control of supernodulation in intergeneric grafts of soybean and common bean. Crop Sci. 33: 794–797

    Article  Google Scholar 

  • Hansen, A.P. and S. Akao, 1991. Early nodule development of soybean cv. Bragg and some nodulation mutants in response to different levels of inoculation. J. Plant Physiol. 138: 501–506

    Article  Google Scholar 

  • Harper, J.E., K.A. Corrigan, A.C. Barbera, and M.H. Abd-Alla, 1997. Hypernodulation of soybean, mungbean and hyacinth bean is controlled by a common shoot signal. Crop Sci. 37: 1242–1246

    Article  Google Scholar 

  • Haser, A., D.L. Robinson, G. Duc, and C. P. Vance, 1992. A mutation in Vicia faba results in ineffective nodules with impaired bacteroid differentiation and reduced synthesis of late nodulins. J. Exp. Bot. 43: 1397–1407

    Article  CAS  Google Scholar 

  • Heidstra, R., A. Kozik, T. Bisseling, and T. A. Lie, 1993. Pea Nod-mutants and Nod factor perception. In: New Horizons in Nitrogen Fixation. Palacios, R., J. Mora and W.E. Newton (Eds.) Kluwer Academic Publisher, Dordrecht. pp. 267–268

    Google Scholar 

  • Herridge, D.F. and S.K.A. Danso, 1995. Enhancing crop N2 fixation through selection and breeding. Plant and Soil. 174: 51–82

    Article  CAS  Google Scholar 

  • Herridge, D.F., H. Marcellos, W. Felton, G.D. Schwenke, M. Aslam, S. Ali, Z. Shah, H. Shah, S. Maskey, S. Bhattari, M. Peoples, and G.L. Turner, 1995. Management of legume N2 fixation in cereal systems. A research programme for the rain fed areas of Pakistan, Nepal and Australia. In: Nuclear Techniques in Soil Plant Studies for Sustainable Agriculture and Environment Preservation. IAEA, Vienna. pp. 237–250

    Google Scholar 

  • Hoffman, T., J.S. Schmidt, and X. Zheng, 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119: 935–949

    Article  PubMed  CAS  Google Scholar 

  • Holl, F.B., 1975. Host plant control of the inheritance of dinitrogen fixation in PisumRhizobium symbiosis. Euphytica. 24: 767–770

    Article  Google Scholar 

  • Hong Suk, L. and L. Suk Ha, 1998. Introduction, development, and characterization of supernodulating soybean mutant–nitrate inhibition of nodulation and nitrogen fixation in supernodulating soybean mutant. Korean J. Crop Sci. 43: 23–27

    Google Scholar 

  • Hong Suk, L., K Yong Wook, and P. Eui Ho, 1998. Introduction, development, and characterization of supernodulating soybean mutant–shoot factor regulation of nodule development in supernodulating soybean mutant. Korean J. Crop Sci. 43: 28–31

    Google Scholar 

  • Hong Suk, L., C. Young Am, P. Eui Ho, K. Yong Wook, I. Kwang, and L. Suk Ha, 1997. Introduction, development, and characterization of supernodulating soybean mutant. I. Mutagenesis of soybean and selection of supernodulating soybean mutant. Korean J. Crop Sci. 42: 247–253

    Google Scholar 

  • Jacobsen, E., 1984. Modification of symbiotic interaction Pisum sativum and Rhizobium leguminosarum by induced mutation. Plant and Soil. 82: 427–438

    Article  CAS  Google Scholar 

  • Jacobsen, E. and W.J. Feenstra, 1984. A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett. 33: 337–334

    Article  CAS  Google Scholar 

  • Kennedy, I.R., 1997. BNF: an energy costly process? In: BNF: The Global Challenge and Future Needs. A position paper discussed at the Rockefeller Foundation Bellagio Conference Centre, Lake Como, Italy, April 8–12.

    Google Scholar 

  • Kneen, B.E. and T.A. LaRue, 1984. Pea (Pisum sativum L.) with strain specificity for Rhizobium leguminosarum. Heredity. 52: 383–389

    Article  Google Scholar 

  • Kneen, B.E., T.A. LaRue, A.M. Hirsch, C.A. Smith, and N.F. Weeden, 1990. Sym13–A gene conditioning ineffective nodulation in Pisum sativum. Plant Physiol. 94: 899–905

    Article  PubMed  CAS  Google Scholar 

  • Kneen, B.E., N.F. Weeden, and T.A. LaRue, 1994. Non-nodulating mutants of Pisum sativum (L.) cv. Sparkle. J. Hered. 85: 129–133

    Google Scholar 

  • Kokubun, M. and S. Akao, 1994. Inheritance of supernodulation in soybean mutant En6500. Soil Sci. and Plant Nutr. 40: 715–718

    Article  Google Scholar 

  • Lee, S.H., D.A. Ashley, and H. R Boerma, 1991. Regulation of nodule development in supernodulating mutants and wild type soybean. Crop Sci. 31: 688–693

    Article  Google Scholar 

  • Lie, T.A., 1971. Temperature dependent root-nodule formation in pea cv. Iran. Plant Soil. 34: 751–752

    Article  Google Scholar 

  • Lie, T.A., 1984. Host genes in Pisum sativum conferring resistance to European Rhizobium leguminosarum. Plant Soil. 82: 415–425

    Article  Google Scholar 

  • Lohrke, S.M., J.H. Orf, and M.J. Sadowsky, 1996. Inheritance of host controlled restriction of nodulation by Bradyrhizobium japonicum strain USDA 110. Crop Sci. 36: 1271–1276

    Article  Google Scholar 

  • Long, S.R., 1989. Rhizobium genetics. Annu. Rev. Genet. 23: 483–506

    Google Scholar 

  • Markwei, C.M. and T.A. LaRue, 1997. Phenotypic characterization of sym21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle. Physiol. Plant. 100: 927–932

    Article  CAS  Google Scholar 

  • Mathew, L.J. and T.M. Davis, 1990. Anatomical comparison of wild type and nonnodulating mutant chickpea (Cicer arietinum). Can. J. Bot. 68: 1201–1207

    Article  Google Scholar 

  • Mathews, A., B.J. Carroll, and P.M. Gresshoff, 1989. Development of Bradyrhizobium infections in supernodulating and non-nodulating mutants of soybean (Glycine max (L.) Merrill). Protoplasma. 150: 40–47

    Article  Google Scholar 

  • Mathews, A., B.J. Carroll, and P.M. Gresshoff, 1990. The genetic interaction between nonnodulation and supernodulation in soybean: an example of developmental epistasis. Theor. Appl. Genet. 79: 125–130

    Article  Google Scholar 

  • Mathews, A., B.J. Carroll, and P.M. Gresshoff, 1992. Studies on root control of nonnodulation and plant growth of non-nodulating mutants and a supernodulating mutant of soybean (Glycine max (L.) Merr.). Plant Sci. 83: 35–43

    Article  CAS  Google Scholar 

  • Micke, A., 1988. Genetic improvement of grain legumes using induced mutations. An overview. In: Improvement of Grain Legume Production Using Induced Mutations. IAEA, Vienna. pp. 1–51

    Google Scholar 

  • Nap, J.P. and T. Bisseling, 1990. Developmental biology of a plant-prokaryote symbiosis: the legume nodule. Science. 250: 948–954

    Article  PubMed  CAS  Google Scholar 

  • Nigam, S.N., V. Arunachalam, R.W. Gibbons, A. Bandhopadyay, and P.C.T. Nambiar, 1980. Genetics of non-nodulation in groundnut (Arachis hypogaea L.). Oleagineux. 35: 453–455

    Google Scholar 

  • Nigam, S.N., S. L. Dwivedi, P.C.T. Nambiar, and R.W. Gibbons, 1991. Registration of five nonnodulating peanut germplasm lines. Crop Sci. 31: 855–856

    Article  Google Scholar 

  • Nigam, S.N., P.C.T. Nambiar, S.L. Dwivedi, and P. Dart, 1982. Genetics of non nodulation in groundnut (Arachis hypogaea L.): studies with single and mixed Rhizobium strains. Euphytica. 31: 691–693

    Article  Google Scholar 

  • Novak, K., K. Pesina, J. Nebesarova, V. Skrdleta, L. Lisa, and V. Nasinec, 1995. Symbiotic tissue degradation pattern in the ineffective nodules of three nodulation mutants of pea (Pisum sativum L.). Ann. Bot. 76: 303–313

    Article  Google Scholar 

  • Novak, K., V. Skrdleta, M. Kropacova, L. Lisa, and M. Nemcova, 1997. Interaction of two genes controlling symbiotic nodule number in pea (Pisum sativum L.). Symbiosis (Rehovot). 23: 43–62

    Google Scholar 

  • Novak, K., V. Skrdleta, and L. Lisa, 1994. Plant growth, photosynthetic pigments, and nitrate assimilation in symbiotic mutants of garden pea. J. Plant Nutr. 17: 1265–1273

    Article  CAS  Google Scholar 

  • Novak, K., V. Skrdleta, M. Nemcova, and L. Lisa, 1993a. Behaviour of pea nodulation mutants as affected by increasing nitrate level. Symbiosis (Rehovot). 15: 195–206

    Google Scholar 

  • Novak, K., V. Skrdleta, M Nemcova, and L. Lisa, 1993b. Symbiotic traits, growth, and classification of pea nodulation mutants. Rostlinna Vyroba. 39: 157–170

    Google Scholar 

  • Nutman, P.S., 1952. Studies on the physiology of nodule formation. HI. Experiments on excision of root tips and nodules. Ann. Bot. 16: 80–102

    Google Scholar 

  • Ohmaya, T., J.C. Nicholas, and J. E. Harper, 1993. Assimilation of 15N2 and 15NO3 by partially nitrate tolerant nodulation mutants of soybean. J. Exp. Bot. 44: 1739–1747

    Article  Google Scholar 

  • Park, S.J. and B.R. Buttery, 1988. Nodulation mutants of white bean (Phaseolus vulgaris L.) induced by ethyl-methane sulphonate. Can. J. Plant Sci. 68: 199–202

    Article  CAS  Google Scholar 

  • Park, S.J. and B.R. Buttery, 1989a. Identification and characterization of common bean (Phaseolus vulgaris L.) lines well nodulated in the presence of high nitrate. Plant and Soil. 119: 237–244

    Article  Google Scholar 

  • Park, S.J. and B.R. Buttery, 1989b. Inheritance of nitrate tolerant supernodulation in EMS-induced mutants of common bean (Phaseolus vulgaris L.). J. Hered. 80: 486–488

    Google Scholar 

  • Park, S.J. and B.R. Buttery, 1994. Inheritance of non-nodulation and ineffective nodulation mutants in common bean. J. Hered. 85: 1–3

    Google Scholar 

  • Park, S.J. and B.R. Buttery, 1997. Complementation of nodulation genes of various mutants in common bean (Phaseolus vulgaris L.). J. Hered. 88 (6): 543–545

    Article  Google Scholar 

  • Pate, J.S., D.B. Layzell, and C.A. Atkins, 1979. Economy of C and N in a nodulated and nonnodulated (NO3–grown) legume. Plant Physiol. 64: 1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Pedalino, M., K.E. Giller, and J. Kipe-Nolt, 1992. Genetics of physiological characterization of non-nodulating mutant of Phaseolus vulgaris L.–NOD125. J. Exp. Bot. 43 (251): 843–849

    Article  Google Scholar 

  • Pedalino, M. and J. Kipe-Nolt, 1993. Common bean (Phaseolus vulgaris L.) mutants defective in root nodule formation. I. Physiological characterization. J. Exp. Bot. 44: 1007–1014

    Article  CAS  Google Scholar 

  • Pedalino, M., J. Kipe-Nolt, L. Frusciante, and L. Monti, 1993. Common bean (Phaseolus vulgaris L.) mutants defective in root nodule formation. H. Genetic analysis. J. Exp. Bot. 44: 1015–1020

    Article  CAS  Google Scholar 

  • Pemberton, I.J., G.R. Smith, and J.C. Miller, 1990. Inheritance of ineffective nodulation in cowpea. Crop Sci. 30: 568–571

    Article  Google Scholar 

  • Penmesta, R.V. and D.R. Cook, 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science. 275: 527–530

    Article  Google Scholar 

  • Peoples, M.B., D.F. Herridge, and J.K. Ladha, 1994. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and Soil. 174: 3–28

    Article  Google Scholar 

  • Pierce, M. and W.D. Bauer, 1983. A rapid regulatory response governing nodulation in soybean. Plant Physiol. 73: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Postma, J.G., E. Jacobsen, and W.J. Feenstra, 1988. Three pea mutants with an altered nodulation studied by genetic analysis and grafting. J. Plant Physiol. 132: 424–430

    Article  Google Scholar 

  • Pracht, J.E., C.D. Nickell, and J.E. Harper, 1993. Genes controlling nodulation in soybean:Rjs and Rj6. Crop Sci. 33: 711–713

    Article  Google Scholar 

  • Pracht, J.E., C.D. Nickell, J.E. Harper, and D.G. Bullock, 1994. Agronomic evaluation of nonnodulating and hypernodulating mutants of soybean. Crop Sci. 34: 738–740

    Article  Google Scholar 

  • Purdom, D. and A.T. Trese, 1995. Morphological and molecular characteristics of hostconditioned inefficient root nodules in cowpea. Plant Physiol. 109: 239–244

    PubMed  CAS  Google Scholar 

  • Rolfe, B.G. and P.M. Gresshoff, 1988. Genetic analysis of legume nodulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 297–319

    Article  Google Scholar 

  • Rupela, O.P., 1992. Natural occurence and salient characters of nonnodulating chickpea plants. Crop Sci. 32: 349–352

    Article  Google Scholar 

  • Sagan, M. and G. Duc, 1996. Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis (Rehovot). 20: 229–245

    Google Scholar 

  • Sagan, M. and P.M. Gresshoff, 1996. Developmental mapping of nodulation events in pea (Pisum sativum L.) using supernodulating plant genotypes and bacterial variability reveals both plant and Rhizobium control of nodulation regulation. Plant Sci. 117: 167–179

    Article  CAS  Google Scholar 

  • Sagan, M., T. Huguet, D. Barker, and G. Duc, 1993a. Characterization of two classes of non-fixing mutants of pea plants (Pisum sativum L.). Plant Sci. 95: 55–66

    Article  CAS  Google Scholar 

  • Sagan, M., A. Messager, and G. Duc, 1993b. Plant symbiotic mutants as a tool to analyse nitrogen nutrition and yield relationship in field-grown peas (Pisum sativum L.). Plant and Soil. 153: 33–45

    Article  CAS  Google Scholar 

  • Sagan, M., T. Huguet, and G. Duc, 1994. Phenotype characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci. 100: 59–70

    Article  CAS  Google Scholar 

  • Schauser, L., A. Roussis, J. Stiller, and J. Stougaard, 1999. A plant regulator controlling development of symbiotic root nodules. Nature. 402: 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J.S., J.E. Harper, T.K. Hoffman, and A.F. Bent, 1999. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol. 119: 951–959

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S., J.D.H. Keating, and G.J. Wells, 1999. Productivity and residual effects of legumes in rice-based cropping systems in warm-temperate environment. I. Legume biomass production and N fixation. Field. Crops Res. 61: 23–35

    Article  Google Scholar 

  • Schulz, S., J.D.H. Keating, and G.J. Wells, 1999. Productivity and residual effects of legumes in rice-based cropping systems in warm-temperate environment. II. Residual effect on rice. Field. Crops Res. 61: 37–49

    Article  Google Scholar 

  • Shantharam, S. and A.K. Mattoo, 1997. Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Plant and Soil. 194: 205–216

    CAS  Google Scholar 

  • Sheehy, J.E., 1999. Relationship between senescence, photosynthesis, nitrogen fixation and seed filling in soybean Glycine max (L.) Merr. Ann. Bot. 51: 679–682

    Google Scholar 

  • Sherrier, D.J., A.Y. Borisov, I.A. Tikhonovich, and N.J. Brewin, 1997. Immunocytological evidence for abnormal symbiosome development in nodules of the pea mutant line Spring2Fix–(sym31). Protoplasma. 199: 57–68

    Article  Google Scholar 

  • Shritliffe, S.J. and J.K. Vessey, 1996. A nodulation (Nod+/Fix-) mutant of Phaseolus vulgaris L. has nodule-like structures lacking peripheral vascular bundles (Pvb-) and is resistant to mycorrhizal infection (Myc-). Plant Sci. 118: 209–220

    Article  Google Scholar 

  • Shritliffe, S.J., J.K. Vessey, B.R. Buttery, and S.J. Park, 1996. Comparison of growth and N accumulation of common bean (Phaseolus vulgaris L.) cv. OAC Rico and its two nodulation mutants, R69 and R99. Can. J. Plant Sci. 76: 73–83

    Article  Google Scholar 

  • Sidorova, K.K., N.Y. Gordienko, and T.I. Novikova, 1995a. Ultrastructure of the root nodules in symbiotic mutants of pea, Pisum sativum. Tsitologiia. 37: 849–852

    Google Scholar 

  • Sidorova, K.K., V.K. Shumny, and L.P. Uzhintseva, 1995b. Genetic experiments with pea mutants pending symbiosis studies. In: Proc. 10`h Intern.Cong. on Nitrogen Fixation. Kluwer Academic Publisher, Dordrecht. pp. 475–478

    Google Scholar 

  • Sidorova, K.K. and V.K. Shumny, 1998. Analysis of pea (Pisum sativum L.) supernodulating mutants. Russian J. Genet. 34: 1233–1235

    CAS  Google Scholar 

  • Sidorova, K.K., V.K. Shumny, and E.Y. Valsova, 1997. Study of pea symbiotic mutants. Genetika. 33: 656–659

    Google Scholar 

  • Sidorova, K.K. and L.P. Uzhintseva, 1992. Use of mutants to identify genes controlling symbiotic characteristics in pea. Genetika. 28: 144–151

    Google Scholar 

  • Sinclair, T.R. and C.T. de Wit, 1975. Photosynthesis and nitrogen requirement for seed production by various crops. Science. 189: 565–567

    Article  PubMed  CAS  Google Scholar 

  • Singh, I. and M.H. Ahmad, 1991. Competitive interaction between non-nodulating and nodulating strains for nodulation of cowpea (Vigna unguiculata). FEMS Microbiol. Letters. 81: 157–160

    Google Scholar 

  • Singh, O. and O.P. Rupela, 1998. A new gene that controls root nodulation in chickpea. Crop Sci. 38: 360–362

    Article  Google Scholar 

  • Singh, O., H.A. van Rheenen, and O.P. Rupela, 1992. Inheritance of new nonnodulation gene in chickpea. Crop Sci. 32: 41–43

    Article  Google Scholar 

  • Song, L., B.J. Carroll, P.M. Gresshoff, and D.F. Herridge, 1995. Field assessement of supernodulating genotypes of soybean for yield, N2 fixation and benefit to subsequent crops. Soil Biol. Biochem. 27: 563–569

    CAS  Google Scholar 

  • Sprent, J.I. and P. Sprent. (1990) Nitrogen Fixing Organisms: Pure and Applied Aspects. Chapman and Hall, London.

    Book  Google Scholar 

  • Streeter, J.G., 1988. Inhibition of legume nodule formation and nitrogen fixation by nitrate. CRC Crit. Rev. Plant Sci. 7: 1–23

    Article  CAS  Google Scholar 

  • Suganuma, N., F. Kawate, and H. Tanaka, 1990. Adsorption of Bradyrhizobium japonicum and root hair curling in non-nodulating (rj j rj j ) soybean plant. Soil Sci. and Plant Nutr. 36: 121–127

    Article  Google Scholar 

  • Suganuma, N. and T.A. LaRue, 1993. Comparisons of enzymes involved in carbon and nitrogen metabolism in normal nodules induced by a pea mutant E135 (sym13). Plant and Cell Physiol. 34: 761–765

    CAS  Google Scholar 

  • Suganuma, N., M. Tamaoki, and H. Kouchi, 1995. Expression of nodulin genes in plant-determined ineffective nodules of pea. Plant Mol. Biol. 28: 1027–1038

    CAS  Google Scholar 

  • Takahashi, M., M. Kokobun, and S. Akao, 1995. Characterization of nitrogen assimilation in a supernodulating soybean mutant En6500. Soil Sci. and Plant Nutr. 41: 567–575

    Article  Google Scholar 

  • Toomsan, B., J.F. McDonagh, V. Limpinuntana, and K.E. Giller, 1995. Nitrogen fixation by groundnut and soybean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand. Plant and Soil. 175: 45–56

    Article  CAS  Google Scholar 

  • Tsyganov, V.E., E.V. Morzhina, S.Y. Stefanov, A.Y. Borisov, V.K. Lebsky, and I.A. Tikhonovich, 1998. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation of root nodule function. Mol. Gen. Genet. 259: 491–503

    Article  PubMed  CAS  Google Scholar 

  • Vance, C.P., 1983. Rhizobium infection and nodulation: A beneficial plant disease? Annu. Rev. Microbiol. 37: 399–424

    Article  CAS  Google Scholar 

  • Vance, C.P., 1997. Enhanced agricultural sustainability through biological nitrogen fixation. In: Biological Fixation of Nitrogen for Ecological and Sustainable Agriculture. Legocki, A., H. Bothe and A. Piihler (Eds.) Springer Verlag, Berlin. pp. 179–186

    Chapter  Google Scholar 

  • Vest, G., 1970. A gene controlling ineffective nodulation in soybean. Crop Sci. 10: 34–35

    Article  Google Scholar 

  • Vest, G. and B.E. Caldwell, 1972. A gene controlling ineffective nodulation in soybean. Crop Sci. 10: 34–35

    Article  Google Scholar 

  • Vincent, J.M., 1980. Factors controlling the legume-Rhizobium symbiosis. In: Nitrogen Fixation. Vol. 2. W.E. Newton and W.H. Orme-Johnson (Eds.) Univ. Park Press, Baltimore. pp. 103–129

    Google Scholar 

  • Vuong, T.D., C.D. Nickell, and J.E. Harper, 1996. Genetic and allelism analyses of hypernodulation soybean mutants from two genetic backgrounds. Crop Sci. 36: 1153–1158

    Article  Google Scholar 

  • Wani, S.P., O.P. Rupela, and K.K. Lee, 1995. Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant and Soil. 174: 29–49

    Article  CAS  Google Scholar 

  • Williams, L.F. and D.L. Lynch, 1954. Inheritance of non-nodulating character in soybean. Agron. J. 46: 28–29

    Article  Google Scholar 

  • Wu, S. and J.E. Harper, 1991. Dinitrogen fixation potential and yield of hypernodulating soybean mutants: a field evaluation. Crop Sci. 31: 1233–1240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bhatia, C.R., Nichterlein, K., Maluszynski, M. (2002). Mutations affecting nodulation in grain legumes and their potential in sustainable cropping systems. In: Maluszynski, M., Kasha, K.J. (eds) Mutations, In Vitro and Molecular Techniques for Environmentally Sustainable Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9996-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9996-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6012-9

  • Online ISBN: 978-94-015-9996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics