Skip to main content

Calculation of Virtual and Resultant Part for Variational Assembly Analysis

  • Conference paper
Book cover Integrated Design and Manufacturing in Mechanical Engineering
  • 574 Accesses

Abstract

Variational assembly analysis is generally a complex problem. In this paper, a method to calculate the virtual and the resultant part for assembly is presented. These two parts represent an extension of the maximum and minimum material part theory previously proposed by Robinson [13]. They may be used during the analysis of the mechanical assembly in order to reduce complexity of the analysis. For a given part, the virtual and the resultant parts are not unique. Ts paper describes the method of calculation of a virtual and a resultant part. This method takes into account datum chaining between toleranced features. A kinematic model is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASME, ASME Y 14.5.1 M-1994. (1994). Mathematical definition of dimensioning and tolerancing principle. American society of mechanical engineers..

    Google Scholar 

  2. Ballot E. et Bourdet P. (1995). Equations formelles et tridimensionnelles des chaînes de dimensions in Les mécanismes. Séminaire tolérancement et chaîne de cotes, ENS de Cachan. 135–146.

    Google Scholar 

  3. Bennis F., Pino L. et Fortin C. (1998). Geometric tolerance transfer for manufacturing by an algebraic method. Proceedings of the 2nd International Conference on Integrated Design and Manufacturing in Mechanical Engineering, Compiègne, France. 713–720.

    Google Scholar 

  4. Bennis F., Pino L. et Fortin C. (1999). Analysis of positional tolerance based on the assembly virtual state. Proceeding of the 6th CIRP Seminar on Computer-Aided Tolerancing, University of Twente, The Netherlands. 415–424.

    Google Scholar 

  5. Latombe J.C., Wilson R.H. and Cazals F. (1997). Assembly sequencing with toleranced parts. Computer Aided Design, vol. 29:2, pp. 159–174, February 1997.

    Article  Google Scholar 

  6. Pairel E. (1997). Métrologie par calibre virtuel sur machine à mesurer tridimensionnelle. PRIMECA. 5ème Colloque sur la Conception Mécanique Intégrée, 155–161.

    Google Scholar 

  7. Parratt S. W., (1994). A theoty of one-dimensional tolerancing for assembly. Thesis of Cornell University. May.

    Google Scholar 

  8. Pino L., Bennis F. et Fortin C. (1999). The use of a kinematic model to analyze positional tolerances in assemblies. Proceeding of the 1999 IEEE Conference on Robotics and Automation, Detroit, Michigan 1418–1423.

    Google Scholar 

  9. Requicha A. A. G. (1983). Toward a theoty of Geometric Tolerancing. The International Journal of Robotics Research, 2(4):45–60.

    Article  Google Scholar 

  10. Requicha A. A. G. et Whalen T. W. (1992). Representation for assemblies. Institute for robotics and intelligent systems. Report n°267.

    Google Scholar 

  11. Rivest L., (1994). Modélisation et analyse tridimensionnelles des tolérances dimensionnelles et géométriques. Phd Thesis de l’Université de Montréal, Ecole Polytechnique.

    Google Scholar 

  12. Rivest L., Fortin C. et Morel C. (1994). Tolerancing a solid model with a kinematic formulation. Computer-Aided Design 26(6), 465–476.

    Article  MATH  Google Scholar 

  13. Robinson D. M. (1998). Geometric tolerancing for assembly. Thesis of Cornell University. May.

    Google Scholar 

  14. Srinivasan V. et Jayaraman R. (1989). Geometric tolerancing: II. Conditional tolerance. IBM Journal of Research an Development, 33(2): 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  15. Srinivasan V. (1993). The Role of Sweeps in Tolerancing Semantics. Manufacturing Review, 6(4):275–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pino, L., Bennis, F., Fortin, C. (2002). Calculation of Virtual and Resultant Part for Variational Assembly Analysis. In: Chedmail, P., Cognet, G., Fortin, C., Mascle, C., Pegna, J. (eds) Integrated Design and Manufacturing in Mechanical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9966-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9966-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6157-7

  • Online ISBN: 978-94-015-9966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics