Skip to main content

Structural Insight into the Mechanism of Supercoiling of the Bacterial Flagellar Filament

  • Chapter
New Approaches to Structural Mechanics, Shells and Biological Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 104))

  • 598 Accesses

Abstract

The bacterial flagellar filament is a helical propeller. Its tubular structure is made of 11 protofilaments of a single protein, flagellin, and yet, the filament switches between left- and right-handed supercoiled forms to allow bacteria to switch their swimming mode between “run” and “tumble”. The mechanism of supercoiling and switching has been shown to involve an axial sliding switch between neighboring protofilaments coupled with a highly precise lengthwise switch of individual protofilament. The structure of the two types of straight filaments and a crystal structure of the protofilament are described in detail, which explains how flagellin can build such a dynamic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, S.-I., Vonderviszt, F., Ishima, R. and Akasaka, K. (1990) Termini of Salmonella flagellin are disordered and become organized upon polymerization into flagellar filament. J. Mol. Biol. 211, 673–677.

    Article  Google Scholar 

  • Asakura, S. (1970) Polymerization of flagellin and polymorphism of flagella. Advan. Biophys. 1, 99–155.

    Google Scholar 

  • Berg, H. C. and Anderson, R. A. (1973) Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382.

    Article  Google Scholar 

  • Calladine, C. R. (1975) Construction of bacterial flagella. Nature 225, 121–124.

    Article  Google Scholar 

  • Calladine, C. R. (1976) Design requirements for the construction of bacterial flagella. J. Theoret. Biol. 57, 469–489.

    Article  Google Scholar 

  • Calladine, C. R. (1978) Change of waveform in bacterial flagella: The role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479.

    Article  Google Scholar 

  • Kamiya, R. and Asakura, S. (1976). Helical transformations of Salmonella flagella in vitro. J. Mol. Biol. 106, 167–186

    Article  Google Scholar 

  • Kamiya, R. and Asakura, S. (1977) Flagellar transformations at alkaline pH. J. Mol. Biol. 108, 513–518.

    Article  Google Scholar 

  • Kamiya, R., Asakura, S., Wakabayashi, K. and Namba, K. (1979) Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J. Mol. Biol. 131, 725–742.

    Article  Google Scholar 

  • Kamiya, R., Asakura, S. & Yamaguchi, S. (1980) Formation of helical filaments by copolymerization of two types of ‘straight’ flagellins. Nature 286, 628–630.

    Article  Google Scholar 

  • Kudo, S., Magariyama, Y. and Aizawa, S.-I. (1990). Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346, 677–680

    Article  Google Scholar 

  • Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. and Adler, J. (1974). Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77

    Article  Google Scholar 

  • Macnab, R. M. and Ornston, M. K. (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30.

    Article  Google Scholar 

  • Mimori, Y., Yamashita, I., Murata, K., Fujiyoshi, Y., Yonekura, K., Toyoshima, C. and Namba, K. (1995) The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87.

    Article  Google Scholar 

  • Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. and Namba, K. (1996) Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Nat’l. Acad. Sci. USA 93, 15108–15113.

    Article  Google Scholar 

  • Mimori-Kiyosue, Y., Vonderviszt, F. and Namba, K. (1997) Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J. Mol. Biol. 270, 222–237.

    Article  Google Scholar 

  • Morgan, D. G., Owen, C., Melanson, L. A. and DeRosier, D. J. (1995) Structure of bacterial flagellar filaments at 11 A resolution: Packing of the α-helices. J. Mol. Biol. 249, 88–110.

    Article  Google Scholar 

  • O’Brien, E. J. and Bennett, P. M. (1972) Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152.

    Article  Google Scholar 

  • Ryu, W. S., Berry R. M. and Berg, H. C. (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447.

    Article  Google Scholar 

  • Samatey, F.A., Imada, K., Vonderviszt, F., Shirakihara, Y. and Namba, K. (2000) Crystallization of the F41 Fragment of Flagellin and Data Collection from Extremely Thin Crystals. J. Struct. Biol. 132, 106–111.

    Article  Google Scholar 

  • Samatey, F. A., Imada, K., Nagashima, S., Kumasaka, T., Yamamoto, M., Vonderviszt, F., and Namba, K. (2001) Structure of the bacterial flagellar protofilament and implication for the switch with sub-A precision. Nature 410, 331–337.

    Article  Google Scholar 

  • Silverman, M. and Simon, M. (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74.

    Article  Google Scholar 

  • Turner, L., Ryu, W. S. and Berg, H. C. (2000) Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801.

    Article  Google Scholar 

  • Vonderviszt, F., Kanto, S., Aizawa, S.-I. and Namba, K. (1989) Terminal region of flagellin are disordered in solution. J. Mol. Biol. 209, 127–133.

    Article  Google Scholar 

  • Vonderviszt, F., Aizawa, S.-I. and Namba, K. (1991) Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221, 1461–1474.

    Article  Google Scholar 

  • Yamashita, I., Hasegawa, K., Suzuki, H., Vonderviszt, F., Mimori-Kiyosue, Y. & Namba, K. (1998) Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132.

    Article  Google Scholar 

  • Yamashita, I., Suzuki, H. and Namba, K. (1998) Multiple-Step Method for Making Exceptionally Well-Oriented Liquid-Crystalline Sols of Macromolecular Assemblies. J. Mol. Biol. 278, 609–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Namba, K. (2002). Structural Insight into the Mechanism of Supercoiling of the Bacterial Flagellar Filament. In: Drew, H.R., Pellegrino, S. (eds) New Approaches to Structural Mechanics, Shells and Biological Structures. Solid Mechanics and Its Applications, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9930-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9930-6_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6120-1

  • Online ISBN: 978-94-015-9930-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics