Skip to main content

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

  • 112 Accesses

Abstract

Vertebrate striated (skeletal and cardiac) muscle contraction is regulated in a Ca2+-dependent manner by the troponin (Tn) complex through interactions with tropomyosin (Tm) and the actin filament. The Tn complex consists of three proteins: troponin I (TnI) which inhibits the actomyosin Mg2+-ATPase activity, troponin C (TnC) which binds Ca2+ ions and removes TnI inhibition, and troponin T (TnT) which makes primary interaction with Tm. These three subunits interact in a cooperative manner with each other and with Tm and actin. Binding of Ca2+ to TnC initiates structural changes in TnC which lead to structural changes in the other Tn subunits (TnI and TnT) as well as Tm. The movement of Tm on the actin filament facilitates the interaction between myosin and actin leading to muscle contraction. The cation, Ca2+, is the main regulatory and signaling molecule in striated muscle. Another cation, Mg2+, is also important in the regulation of striated muscle contraction mainly via its ability to inhibit the Ca2+ release channel, especially in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexis, M. N., and Gratzer, W. B. (1978). Interaction of skeletal myosin light chains with calcium ions, Biochemistry 17, 2319–25.

    PubMed  CAS  Google Scholar 

  • Anderson, P. A., Greig, A., Mark, T. M., Malouf, N. N., Oakeley, A. E., Ungerleider, R. M., Allen, P. D., and Kay, B. K. (1995). Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart, Circ Res 76, 681–6.

    PubMed  CAS  Google Scholar 

  • Andersson, T., Drakenberg, T., Forsen, S., and Thulin, E. (1981). A 43Ca NMR and 25Mg NMR study of rabbit skeletal muscle troponin C: exchange rates and binding constants, FEBS Lett 125, 39–43.

    PubMed  CAS  Google Scholar 

  • Bagshaw, C. R., and Reed, G. H. (1977). The significance of the slow dissociation of divalent metal ions from myosin ‘regulatory’ light chains, FEBS Lett 81, 386–90.

    PubMed  CAS  Google Scholar 

  • Ball, K. L., Johnson, M. D., and Solaro, R. J. (1994). Isoform specific interactions of troponin I and troponin C determine pH sensitivity of myofibrillar Ca2+ activation, Biochemistry 33, 8464–71.

    PubMed  CAS  Google Scholar 

  • Berchtold, M. W., Brinkmeier, H., and Muntener, M. (2000). Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease, Physiol Rev 80, 1215–65.

    PubMed  CAS  Google Scholar 

  • Bing, W., Knott, A., Redwood, C., Esposito, G., Purcell, I., Watkins, H., and Marston, S. (2000). Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp 175Asn and Glu 180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay, J Mol Cell Cardiol 32, 1489–98.

    PubMed  CAS  Google Scholar 

  • Blanchard, H., Grochulski, P., Li, Y., Arthur, J. S., Davies, P. L., Elce, J. S., and Cygler, M. (1997). Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes [see comments], Nat Struct Biol 4, 532–8.

    PubMed  CAS  Google Scholar 

  • Bodor, G. S., Oakeley, A. E., Allen, P. D., Crimmins, D. L., Ladenson, J. H., and Anderson, P. A. (1997). Troponin I phosphorylation in the normal and failing adult human heart, Circulation 96, 1495–500.

    PubMed  CAS  Google Scholar 

  • Bottinelli, R., Canepari, M., Cappelli, V., and Reggiani, C. (1995). Maximum speed of shortening and ATPase activity in atrial and ventricular myocardia of hyperthyroid rats, Am J Physiol 269, C785–90.

    PubMed  CAS  Google Scholar 

  • Bouvagnet, P., Leger, J., Pons, F., Dechesne, C., and Leger, J. J. (1984). Fiber types and myosin types in human atrial and ventricular myocardium. An anatomical description, Circ Res 55, 794–804.

    CAS  Google Scholar 

  • Carafoli, E. (1987). Intracellular calcium homeostasis, Annu Rev Biochem 56, 395–433.

    PubMed  CAS  Google Scholar 

  • Corrie, J. E., Brandmeier, B. D., Ferguson, R. E., Trentham, D. R., Kendrick-Jones, J., Hopkins, S. C., van der Heide, U. A., Goldman, Y. E., Sabido-David, C., Dale, R. E., et al. (1999). Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction, Nature 400, 425–30.

    PubMed  CAS  Google Scholar 

  • Cox, J. A., Comte, M., and Stein, E. A. (1981). Calmodulin-free skeletal-muscle troponin C prepared in the absence of urea, Biochem J 195, 205–11.

    PubMed  CAS  Google Scholar 

  • Cozens, B., and Reithmeier, R. A. (1984). Size and shape of rabbit skeletal muscle calsequestrin, J Biol Chem 259, 6248–52.

    PubMed  CAS  Google Scholar 

  • Crow, M. T., and Kushmerick, M. J. (1982). Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle, J Biol Chem 257, 2121–4.

    PubMed  CAS  Google Scholar 

  • Diaz-Munoz, M., Hamilton, S. L., Kaetzel, M. A., Hazarika, P., and Dedman, J. R. (1990). Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin), J Biol Chem 265, 15894–9.

    PubMed  CAS  Google Scholar 

  • Diffee, G. M., Greaser, M. L., Reinach, F. C., and Moss, R. L. (1995). Effects of a non-divalent cationbinding mutant of myosin regulatory light chain on tension generation in skinned skeletal muscle fibers, Biophys J 68, 1443–52.

    PubMed  CAS  Google Scholar 

  • Ding, X. L., Akella, A. B., and Gulati, J. (1995). Contributions of troponin I and troponin C to the acidic pH-induced depression of contractile Ca2+ sensitivity in cardiotrabeculae, Biochemistry 34, 2309–16.

    PubMed  CAS  Google Scholar 

  • Donaldson, S. K., Hermansen, L., and Bolles, L. (1978). Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits, Pflugers Arch 376, 55–65.

    PubMed  CAS  Google Scholar 

  • Dunn, S. E., Burns, J. L., and Michel, R. N. (1999). Calcineurin is required for skeletal muscle hypertrophy, J Biol Chem 274, 21908–12.

    PubMed  CAS  Google Scholar 

  • Dutt, P., Arthur, J. S., Grochulski, P., Cygler, M., and Elce, J. S. (2000). Roles of individual EF-hands in the activation of m-calpain by calcium, Biochem J 348, 37–43.

    PubMed  CAS  Google Scholar 

  • Egger, M., and Niggli, E. (1999). Regulatory function of Na-Ca exchange in the heart: milestones and outlook, J Membr Biol 168, 107–30.

    PubMed  CAS  Google Scholar 

  • Elliott, K., Watkins, H., and Redwood, C. S. (2000). Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy, J Biol Chem 275, 22069–74.

    PubMed  CAS  Google Scholar 

  • el-Saleh, S. C., and Solaro, R. J. (1988). Troponin I enhances acidic pH-induced depression of Ca2+ binding to the regulatory sites in skeletal troponin C, J Biol Chem 263, 3274–8.

    PubMed  CAS  Google Scholar 

  • Endo, M. (1972). Stretch-induced increase in activation of skinned muscle fibres by calcium, Nat New Biol. 237, 211–3.

    PubMed  CAS  Google Scholar 

  • Engelkamp, D., Schafer, B. W., Erne, P., and Heizmann, C. W. (1992). S100 alpha, CAPL, and CACY:molecular cloning and expression analysis of three calcium-binding proteins from human heart, Biochemistry 31, 10258–64.

    PubMed  CAS  Google Scholar 

  • Epstein, N. D. (1998). The molecular biology and pathophysiology of hypertrophic cardiomyopathy dueto mutations in the beta myosin heavy chains and the essential and regulatory light chains, Adv Exp Med Biol 453, 105–14; discussion 114–5.

    PubMed  CAS  Google Scholar 

  • Fabiato, A. (1981). Myoplasmic free calcium concentration reached during the twitch of an intact isolatedcardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle, J Gen Physiol 78, 457–97.

    PubMed  CAS  Google Scholar 

  • Fabiato, A., and Fabiato, F. (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles, J Physiol (Lond) 276, 233–55.

    CAS  Google Scholar 

  • Fano, G., Marsili, V., Angelella, P., Aisa, M. C., Giambanco, I., and Donato, R. (1989). S-100a0 protein stimulates Ca2+-induced Ca2+ release from isolated sarcoplasmic reticulum vesicles, FEBS Lett 255, 381–4.

    PubMed  CAS  Google Scholar 

  • Flavigny, J., Richard, P., Isnard, R., Carrier, L., Charron, P., Bonne, G., Forissier, J. F., Desnos, M., Dubourg, O., Komajda, M., et al. (1998). Identification of two novel mutations in the ventricular regulatory myosin light chain gene (MYL2) associated with familial and classical forms of hypertrophic cardiomyopathy, J Mol Med 76, 208–14.

    PubMed  CAS  Google Scholar 

  • Force, T., Rosenzweig, A., Choukroun, G., and Hajjar, R. (1999). Calcineurin inhibitors and cardiachypertrophy, Lancet 353, 1290–2.

    PubMed  CAS  Google Scholar 

  • Fuchs, F., and Wang, Y. P. (1996). Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding, J Mol Cell Cardiol 28, 1375–83.

    PubMed  CAS  Google Scholar 

  • Gagne, S. M., Tsuda, S., Li, M. X., Smillie, L. B., and Sykes, B. D. (1995). Structures of the troponin C regulatory domains in the apo and calcium-saturated states, Nat Struct Biol 2, 784–9.

    PubMed  CAS  Google Scholar 

  • Gilchrist, J. S., Wang, K. K., Katz, S., and Belcastro, A. N. (1992). Calcium-activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release, J Biol Chem 267, 20857–65.

    PubMed  CAS  Google Scholar 

  • Grabarek, Z., Drabikowski, W., Leavis, P. C., Rosenfeld, S. S., and Gergely, J. (1981). Proteolyticfragments of troponin C. Interactions with the other troponin subunits and biological activity, J Biol Chem 256, 13121–7.

    PubMed  CAS  Google Scholar 

  • Grabarek, Z., Grabarek, J., Leavis, P. C., and Gergely, J. (1983). Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin, J Biol Chem 258, 14098–102.

    PubMed  CAS  Google Scholar 

  • Guerini, D., Garcia-Martin, E., Zecca, A., Guidi, F., and Carafoli, E. (1998). The calcium pump of the plasma membrane: membrane targeting, calcium binding sites, tissue-specific isoform expression, Acta Physiol Scand Suppl 643, 265–73.

    PubMed  CAS  Google Scholar 

  • Gulati, J., Babu, A., and Su, H. (1992). Functional delineation of the Ca(2+)-deficient EF-hand in cardiac muscle, with genetically engineered cardiac-skeletal chimeric troponin C, J Biol Chem 267, 25073–7.

    PubMed  CAS  Google Scholar 

  • Handy, R. D., Gow, I. F., Ellis, D., and Flatman, P. W. (1996). Na-dependent regulation of intracellular free magnesium concentration in isolated rat ventricular myocytes, J Mol Cell Cardiol 28, 1641–51.

    PubMed  CAS  Google Scholar 

  • Harada, K., Takahashi-Yanaga, F., Minakami, R., Morimoto, S., and Ohtsuki, I. (2000). Functional consequences of the deletion mutation deltaGlu 160 in human cardiac troponin T, J Biochem (Tokyo) 127, 263–8.

    CAS  Google Scholar 

  • Heeley, D. H. (1994). Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T, Eur J Biochem 221, 129–37.

    PubMed  CAS  Google Scholar 

  • Hernandez, O. M., Housmans, P. R., and Potter, J. D. (2001). Invited Review: Pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation, J. Appl. Physiol. 90, 1125–1136.

    PubMed  CAS  Google Scholar 

  • Herzberg, O., and James, M. N. (1985). Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution, Nature 313, 653–9.

    PubMed  CAS  Google Scholar 

  • Herzog, A., Szegedi, C., Jona, I., Herberg, F. W., and Varsanyi, M. (2000). Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca(2+) release channel/ryanodine receptor with calsequestrin, FEBS Lett 472, 73–7.

    PubMed  CAS  Google Scholar 

  • Hincke, M. T., McCubbin, W. D., and Kay, C. M. (1978). Calcium-binding properties of cardiac and skeletal troponin C as determined by circular dichroism and ultraviolet difference spectroscopy, Can J Biochem 56, 384–95.

    PubMed  CAS  Google Scholar 

  • Hofmann, P. A., Metzger, J. M., Greaser, M. L., and Moss, R. L. (1990). Effects of partial extraction of light chain 2 on the Ca2+ sensitivities of isometric tension, stiffness, and velocity of shortening in skinned skeletal muscle fibers, J Gen Physiol 95, 477–98.

    PubMed  CAS  Google Scholar 

  • Holroyde, M. J., Potter, J. D., and Solaro, R. J. (1979). The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins, J Biol Chem 254, 6478–82.

    PubMed  CAS  Google Scholar 

  • Holroyde, M. J., Robertson, S. P., Johnson, J. D., Solaro, R. J., and Potter, J. D. (1980). The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J Biol Chem 255, 11688–93.

    PubMed  CAS  Google Scholar 

  • Hoskins, B. K., Lipscomb, S., Mulligan, I. P., and Ashley, C. C. (1999). How do skinned skeletal muscle fibers relax?, Biochem Biophys Res Commun 254, 330–3.

    PubMed  CAS  Google Scholar 

  • Houdusse, A., Love, M. L., Dominguez, R., Grabarek, Z., and Cohen, C. (1997). Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily, Structure 5, 1695–711.

    PubMed  CAS  Google Scholar 

  • Iida, S. (1988). Calcium binding to troponin C. II. A Ca2+ ion titration study with a Ca2+ ion sensitive electrode, J Biochem (Tokyo) 103, 482–6.

    CAS  Google Scholar 

  • Ikemoto, N., Antoniu, B., Kang, J. J., Meszaros, L. G., and Ronjat, M. (1991). Intravesicular calcium transient during calcium release from sarcoplasmic reticulum, Biochemistry 30, 5230–7.

    PubMed  CAS  Google Scholar 

  • Jideama, N. M., Noland, T. A., Jr., Raynor, R. L., Blobe, G. C., Fabbro, D., Kazanietz, M. G., Blumberg, P.M., Hannun, Y. A., and Kuo, J. F. (1996). Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties, J Biol Chem 271, 23277–83.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Charlton, S. C., and Potter, J. D. (1979). A fluorescence stopped flow analysis of Ca2+exchange with troponin C, J Biol Chem 254, 3497–502.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Collins, J. H., Robertson, S. P., and Potter, J. D. (1980). A fluorescent probe study of Ca2+binding to the Ca2+-specific sites of cardiac troponin and troponin C, J Biol Chem 255, 9635–40.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Robinson, D. E., Robertson, S. P., Schwartz, A., and Potter, J. D. (1981). Ca2+ exchange with troponin and regulation of muscle contraction. In Regulation of Muscle Contraction: Excitationcontraction Coupling, A. Grinnel, ed. (Academic Press), pp. 241–259.

    Google Scholar 

  • Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., and Morad, M. (1998). Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin, J Clin Invest 101, 1385–93.

    PubMed  CAS  Google Scholar 

  • Kawaski, H., and Kretsinger, R. (1994). Calcium-binding Proteins 1: EF-hands, Vol 1, Academic Press.

    Google Scholar 

  • Khaitlina, S. Y. (2001). Functional specificity of actin isoforms, Int Rev Cytol 202, 35–98.

    PubMed  CAS  Google Scholar 

  • Kimura, A., Harada, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., Hiroi, S., Sasaoka, T., Ohbuchi, N., Nakamura, T., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophiccardiomyopathy, Nat Genet 16, 379–82.

    PubMed  CAS  Google Scholar 

  • Kirschenlohr, H. L., Grace, A. A., Vandenberg, J. I., Metcalfe, J. C., and Smith, G. A. (2000). Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart, Biochem J 346, 385–91.

    PubMed  CAS  Google Scholar 

  • Kleerekoper, Q., Liu, W., Choi, D., and Putkey, J. A. (1998). Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C, J Biol Chem 273, 8153–60.

    PubMed  CAS  Google Scholar 

  • Knollmann, B. C., Blatt, S. A., Horton, K., Freitas, F., Miller, T. E., Bell, M., Housmans, P. R., Weissman, N. J., Morad, M., and Potter, J. D. (2001). Inotropic Stimulation Induces Cardiac Dysfunction in Transgenic Mice Expressing a Troponin T (I79n) Mutation Linked to Familial Hypertrophic Cardiomyopathy, J Biol Chem 276, 10039–10048.

    PubMed  CAS  Google Scholar 

  • Krause, K. H., Milos, M., Luan-Rilliet, Y., Lew, D. P., and Cox, J. A. (1991). Thermodynamics of cationbinding to rabbit skeletal muscle calsequestrin. Evidence for distinct Ca(2+)- and Mg(2+)-binding sites, J Biol Chem 266, 9453–9.

    PubMed  CAS  Google Scholar 

  • Kurebayashi, N., and Ogawa, Y. (1988). Increase by trifluoperazine in calcium sensitivity of myofibrils in a skinned fibre from frog skeletal muscle, J Physiol (Lond) 403, 407–24.

    CAS  Google Scholar 

  • Lamb, G. D. (1993). Ca2+ inactivation, Mg2+ inhibition and malignant hyperthermia [news], J Muscle Res Cell Motil 14, 554–6.

    PubMed  CAS  Google Scholar 

  • Lamb, G. D. (2000). Excitation-contraction coupling in skeletal muscle: comparisons with cardiac muscle, Clin Exp Pharmacol Physiol 27, 216–24.

    PubMed  CAS  Google Scholar 

  • Lamb, G. D., and Stephenson, D. G. (1994). Effects of intracellular pH and [Mg2+] on excitationcontraction coupling in skeletal muscle fibres of the rat, J Physiol (Lond) 478, 331–9.

    CAS  Google Scholar 

  • Lang, R., Zhao, J., and Potter, J. D. (1999). Impaired Inhibition and activation observed with the arginine 145 to glycine mutation of human cardiac troponin I, Biophys J 76, A274.

    Google Scholar 

  • Langer, G. A. (1992). Calcium and the heart: exchange at the tissue, cell, and organelle levels, Faseb J 6, 893–902.

    PubMed  CAS  Google Scholar 

  • Laurant, P., and Touyz, R. M. (2000). Physiological and pathophysiological role of magnesium in thecardiovascular system: implications in hypertension, J Hypertens 18, 1177–91.

    PubMed  CAS  Google Scholar 

  • Leavis, P. C., Rosenfeld, S. S., Gergely, J., Grabarek, Z., and Drabikowski, W. (1978). Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T, J Biol Chem 253, 5452–9.

    PubMed  CAS  Google Scholar 

  • Lehman, W. (1978). Thick-filament-linked calcium regulation in vertebrate striated muscle, Nature 274, 80–l.

    PubMed  CAS  Google Scholar 

  • Leszyk, J., Dumaswala, R., Potter, J. D., Gusev, N. B., Verin, A. D., Tobacman, L. S., and Collins, J. H. (1987). Bovine cardiac troponin T: amino acid sequences of the two isoforms, Biochemistry 26, 7035–42.

    PubMed  CAS  Google Scholar 

  • Levine, R. J., Yang, Z., Epstein, N. D., Fananapazir, L., Stull, J. T., and Sweeney, H. L. (1998). Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains, J Struct Biol 122, 149–61.

    PubMed  CAS  Google Scholar 

  • Levitsky, D. O., Benevolensky, D. S., Levchenko, T. S., Smirnov, V. N., and Chazov, E. I. (1981). Calcium-binding rate and capacity of cardiac sarcoplasmic reticulum, J Mol Cell Cardiol 13, 785–96.

    PubMed  CAS  Google Scholar 

  • Li, M. X., Gagne, S. M., Spyracopoulos, L., Kloks, C. P., Audette, G., Chandra, M., Solaro, R. J., Smillie, L. B., and Sykes, B. D. (1997). NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes, Biochemistry 36, 12519–25.

    PubMed  CAS  Google Scholar 

  • Liao, R., Wang, C. K., and Cheung, H. C. (1994). Coupling of calcium to the interaction of troponin I with troponin C from cardiac muscle, Biochemistry 33, 12729–34.

    PubMed  CAS  Google Scholar 

  • Lokuta, A. J., Meyers, M. B., Sander, P. R., Fishman, G. I., and Valdivia, H. H. (1997). Modulation of cardiac ryanodine receptors by sorcin, J Biol Chem 272, 25333–8.

    PubMed  CAS  Google Scholar 

  • Lowey, S., Waller, G. S., and Trybus, K. M. (1993a). Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay, J Biol Chem 268, 20414–8.

    PubMed  CAS  Google Scholar 

  • Lowey, S., Waller, G. S., and Trybus, K. M. (1993b). Skeletal muscle myosin light chains are essential for physiological speeds of shortening, Nature 365, 454–6.

    PubMed  CAS  Google Scholar 

  • Luckcuck, T., Trotter, P. J., and Walker, J. H. (1998). Localization of annexin VI in the adult and neonatal heart, Cell Biol Int 22, 199–205.

    PubMed  CAS  Google Scholar 

  • Lynch, G. S., and Williams, D. A. (1994). The effect of lowered pH on the Ca(2+)-activated contractile characteristics of skeletal muscle fibres from endurance-trained rats, Exp Physiol 79, 47–57.

    PubMed  CAS  Google Scholar 

  • Ma, J., Fill, M., Knudson, C. M., Campbell, K. P., and Coronado, R. (1988). Ryanodine receptor of skeletal muscle is a gap junction-type channel, Science 242, 99–102.

    PubMed  CAS  Google Scholar 

  • Matteo, R. G., and Moravec, C. S. (2000). Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart, Cardiovasc Res 45, 961–70.

    PubMed  CAS  Google Scholar 

  • Mazzei, G. J., and Kuo, J. F. (1984). Phosphorylation of skeletal-muscle troponin I and troponin T by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin, Biochem J 218, 361–9.

    PubMed  CAS  Google Scholar 

  • Meissner, G. (1994). Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors, Annu Rev Physiol 56, 485–508.

    PubMed  CAS  Google Scholar 

  • Melzer, W., Herrmann-Frank, A., and Luttgau, H. C. (1995). The role of Ca2+ ions in excitationcontraction coupling of skeletal muscle fibres, Biochim Biophys Acta 1241, 59–116.

    PubMed  Google Scholar 

  • Mercola, D., Bullard, B., and Priest, J. (1975). Crystallisation of tropinin-C, Nature 254, 634–5.

    PubMed  CAS  Google Scholar 

  • Metzger, J. M., and Moss, R. L. (1987). Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles, J Physiol (Lond) 393, 727–42.

    CAS  Google Scholar 

  • Metzger, J. M., and Moss, R. L. (1992). Myosin light chain 2 modulates calcium-sensitive cross-bridge transitions in vertebrate skeletal muscle, Biophys J 63, 460–8.

    PubMed  CAS  Google Scholar 

  • Metzger, J. M., Parmacek, M. S., Barr, E., Pasyk, K., Lin, W. I., Cochrane, K. L., Field, L. J., and Leiden, J.M. (1993). Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice, Proc Natl Acad Sci U S A 90, 9036–40.

    PubMed  CAS  Google Scholar 

  • Meyers, M. B., Zamparelli, C., Verzili, D., Dicker, A. P., Blanck, T. J., and Chiancone, E. (1995). Calcium-dependent translocation of sorcin to membranes: functional relevance in contractile tissue, FEBS Lett 357, 230–4.

    PubMed  CAS  Google Scholar 

  • Miller, T., Szczesna, D., Housmans, P. R., Zhao, J., deFreitas, F., Gomes, A. V., Culbreath, L., McCue, J., Wang, Y., Xu, Y., et al. (2001). Abnormal Contractile Function in Transgenic Mice Expressing an FHC-Linked Troponin T (179N) Mutation, J Biol Chem 276, 2743–3755.

    Google Scholar 

  • Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., Gregersen, N., Hansen, P. S., Baandrup, U., and Borglum, A. D. (1999). Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy, J Clin Invest 103, R39–43.

    PubMed  CAS  Google Scholar 

  • Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R., and Olson, E. N. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy, Cell 93, 215–28.

    Google Scholar 

  • Morano, I. (1999). Tuning the human heart molecular motors by myosin light chains, J Mol Med 77, 544–55.

    PubMed  CAS  Google Scholar 

  • Morano, I., Hofmann, F., Zimmer, M., and Ruegg, J. C. (1985). The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres, FEBS Lett 189, 221–4.

    PubMed  CAS  Google Scholar 

  • Morimoto, S. (1991). Effect of myosin cross-bridge interaction with actin on the Ca(2+)-binding properties of troponin C in fast skeletal myofibrils, J Biochem (Tokyo) 109, 120–6.

    CAS  Google Scholar 

  • Morimoto, S., Harada, K., and Ohtsuki, I. (1999). Roles of troponin isoforms in pH dependence of contraction in rabbit fast and slow skeletal and cardiac muscles, J Biochem (Tokyo) 126, 121–9.

    CAS  Google Scholar 

  • Morimoto, S., and Ohtsuki, I. (1987). Ca2+- and Sr2+-sensitivity of the ATPase activity of rabbit skeletal myofibrils: effect of the complete substitution of troponin C with cardiac troponin C, calmodulin, and parvalbumins, J Biochem (Tokyo) 101, 291–301.

    CAS  Google Scholar 

  • Morimoto, S., and Ohtsuki, I. (1994a). Ca2+ binding to cardiac troponin C in the myofilament lattice and its relation to the myofibrillar ATPase activity, Eur J Biochem 226, 597–602.

    PubMed  CAS  Google Scholar 

  • Morimoto, S., and Ohtsuki, I. (1994b). Role of troponin C in determining the Ca(2+)-sensitivity and cooperativity of the tension development in rabbit skeletal and cardiac muscles, J Biochem (Tokyo) 115, 144–6.

    CAS  Google Scholar 

  • Murphy, E., Freudenrich, C. C., Levy, L. A., London, R. E., and Lieberman, M. (1989a). Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra, Proc Natl Acad Sci U S A 86, 2981–4.

    PubMed  CAS  Google Scholar 

  • Murphy, E., Steenbergen, C., Levy, L. A., Raju, B., and London, R. E. (1989b). Cytosolic free magnesium levels in ischemic rat heart, J Biol Chem 264, 5622–7.

    PubMed  CAS  Google Scholar 

  • Murray, B. E., and Ohlendieck, K. (1998). Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle, FEBS Lett 429, 317–22.

    PubMed  CAS  Google Scholar 

  • Nagy, B., and Gergely, J. (1979). Extent and localization of conformational changes in troponin C caused by calcium binding. Spectral studies in the presence and absence of 6 M urea, J Biol Chem 254, 12732–7.

    PubMed  CAS  Google Scholar 

  • Nassar, R., Malouf, N. N., Kelly, M. B., Oakeley, A. E., and Anderson, P. A. (1991). Force-pCa relation and troponin T isoforms of rabbit myocardium, Circ Res 69, 1470–5.

    PubMed  CAS  Google Scholar 

  • Negele, J. C., Dotson, D. G., Liu, W., Sweeney, H. L., and Putkey, J. A. (1992). Mutation of the high affinity calcium binding sites in cardiac troponin C, J Biol Chem 267, 825–31.

    PubMed  CAS  Google Scholar 

  • Noland, T. A., Jr., and Kuo, J. F. (1991). Protein kinase C phosphorylation of cardiac troponin I or troponin Tinhibits Ca(2+)-stimulated actomyosin MgATPase activity, J Biol Chem 266, 4974–8.

    PubMed  CAS  Google Scholar 

  • Ogawa, Y. (1985). Calcium binding to troponin C and troponin: effects of Mg2+, ionic strength and pH, J Biochem (Tokyo) 97, 1011–23.

    CAS  Google Scholar 

  • Palmer, S., and Kentish, J. C. (1994). The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres, J Physiol 480, 45–60.

    PubMed  CAS  Google Scholar 

  • Palmiter, K. A., Kitada, Y., Muthuchamy, M., Wieczorek, D. F., and Solaro, R. J. (1996). Exchange of beta-for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation, J Biol Chem 271, 11611–4.

    PubMed  CAS  Google Scholar 

  • Pan, B. S., Hannon, J. D., Wiedmann, R., Potter, J. D., Kranias, E. G., Shen, Y. T., Johnson, R. G., and Housmans, P. R. (1999). Effects of isoproterenol on twitch contraction of wild type and phospholamban-deficient murine ventricular myocardium, J Mol Cell Cardiol 31, 159–66.

    PubMed  CAS  Google Scholar 

  • Pan, B. S., and Solaro, R. J. (1987). Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers, J Biol Chem 262, 7839–49.

    PubMed  CAS  Google Scholar 

  • Parsons, B., Szczesna, D., Zhao, J., Van Slooten, G., Kerrick, W. G., Putkey, J. A., and Potter, J. D. (1997). The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres, J Muscle Res Cell Motil 18, 599–609.

    PubMed  CAS  Google Scholar 

  • Pearlstone, J. R., Chandra, M., Sorenson, M. M., and Smillie, L. B. (2000). Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II glu mutations, J Biol Chem 275, 35106–15.

    PubMed  CAS  Google Scholar 

  • Perry, S. V. (1998). Troponin T: genetics, properties and function, J Muscle Res Cell Motil 19, 575–602.

    PubMed  CAS  Google Scholar 

  • Pifl, C., Plank, B., Wyskovsky, W., Bertel, O., Hellmann, G., and Suko, J. (1984). Calmodulin X(Ca2+)4 is the active calmodulin-calcium species activating the calcium-, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum in the regulation of the calcium pump, Biochim Biophys Acta 773, 197–206.

    PubMed  CAS  Google Scholar 

  • Podlubnaya, Z., Kakol, I., Moczarska, A., Stepkowski, D., and Udaltsov, S. (1999). Calcium-induced structural changes in synthetic myosin filaments of vertebrate striated muscles, J Struct Biol 127, 1–15.

    PubMed  CAS  Google Scholar 

  • Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., Rayment, I., Sellers, J. R., Fananapazir, L., and Epstein, N. D. (1996). Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle, Nat Genet 13, 63–9.

    PubMed  CAS  Google Scholar 

  • Potter, J. D., and Gergely, J. (1975). The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J Biol Chem 250, 4628–33.

    PubMed  CAS  Google Scholar 

  • Potter, J. D., Robertson, S. P., and Johnson, J. D. (1981). Magnesium and the regulation of muscle contraction, Fed Proc 40, 2653–6.

    PubMed  CAS  Google Scholar 

  • Potter, J. D., Strang-Brown, P., Walker, P. L., and Iida, S. (1983). Ca2+ binding to calmodulin, Methods Enzymol 102, 135–43.

    PubMed  CAS  Google Scholar 

  • Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993a). Structure of the actin-myosin complex and its implications for muscle contraction [see comments], Science 261, 58–65.

    PubMed  CAS  Google Scholar 

  • Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993b). Three-dimensional structure of myosin subfragment-1: a molecular motor [see comments], Science 261, 50–8.

    PubMed  CAS  Google Scholar 

  • Redwood, C. S., Moolman-Smook, J. C., and Watkins, H. (1999). Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy, Cardiovasc Res 44, 20–36.

    PubMed  CAS  Google Scholar 

  • Rios, E., and Brum, G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325, 717–20.

    PubMed  CAS  Google Scholar 

  • Robertson, S. P., Johnson, J. D., Holroyde, M. J., Kranias, E. G., Potter, J. D., and Solaro, R. J. (1982). The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin, J Biol Chem 257, 260–3.

    PubMed  CAS  Google Scholar 

  • Robertson, S. P., Johnson, J. D., and Potter, J. D. (1981). The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+, Biophys J 34, 559–69.

    PubMed  CAS  Google Scholar 

  • Romani, A. M., and Scarpa, A. (2000). Regulation of cellular magnesium, Front Biosci 5, D720–34.

    PubMed  CAS  Google Scholar 

  • Rusnak, F., and Mertz, P. (2000). Calcineurin: form and function, Physiol Rev 80, 1483–521.

    PubMed  CAS  Google Scholar 

  • Sanbe, A., Fewell, J. G., Gulick, J., Osinska, H., Lorenz, J., Hall, D. G., Murray, L. A., Kimball, T. R., Witt, S. A., and Robbins, J. (1999). Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2, J Biol Chem 274, 21085–94.

    PubMed  CAS  Google Scholar 

  • Sanbe, A., Nelson, D., Gulick, J., Setser, E., Osinska, H., Wang, X., Hewett, T. E., Klevitsky, R., Hayes, E., Warshaw, D. M., and Robbins, J. (2000). In vivo analysis of an essential myosin light chain mutation linked to familial hypertrophic cardiomyopathy, Circ Res 87, 296–302.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F., and Kimura, A. (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene, Biochem Biophys Res Commun 262, 411–7.

    PubMed  CAS  Google Scholar 

  • Schafer, B. W., and Heizmann, C. W. (1996). The S 100 family of EF-hand calcium-binding proteins: functions and pathology, Trends Biochem Sci 21, 134–40.

    PubMed  CAS  Google Scholar 

  • Schneider, M. F. (1994). Control of calcium release in functioning skeletal muscle fibers, Annu Rev Physiol 56, 463–84.

    PubMed  CAS  Google Scholar 

  • Schneider, M. F., and Chandler, W. K. (1973). Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling, Nature 242, 244–6.

    PubMed  CAS  Google Scholar 

  • Seiler, S., Wegener, A. D., Whang, D. D., Hathaway, D. R., and Jones, L. R. (1984). High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease, J Biol Chem 259, 8550–7.

    PubMed  CAS  Google Scholar 

  • Sheng, Z., Strauss, W. L., Francois, J. M., and Potter, J. D. (1990). Evidence that both Ca(2+)-specific sites of skeletal muscle TnC are required for full activity [published erratum appears in J Biol Chem 1993 May 5;268(13):9936], J Biol Chem 265, 21554–60.

    PubMed  CAS  Google Scholar 

  • Sia, S. K., Li, M. X., Spyracopoulos, L., Gagne, S. M., Liu, W., Putkey, J. A., and Sykes, B. D. (1997). Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain, J Biol Chem 272, 18216–21.

    PubMed  CAS  Google Scholar 

  • Slupsky, C. M., and Sykes, B. D. (1995). NMR solution structure of calcium-saturated skeletal muscle troponin C, Biochemistry 34, 15953–64.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., Kumar, P., Blanchard, E. M., and Martin, A. F. (1986). Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Evidence for developmental differences in thin filament regulation, Circ Res 58, 721–9.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., Lee, J. A., Kentish, J. C., and Allen, D. G. (1988). Effects of acidosis on ventricular muscle from adult and neonatal rats, Circ Res 63, 779–87.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., and Pan, B.-S. (1989). Control and modulation of contractile activity of cardaic myofilaments. In Physiology and Pathophysiology of the Heart., N. Spereliakis, ed. (Boston, KlumerAcademic), pp. 291–303.

    Google Scholar 

  • Solaro, R. J., Wise, R. M., Shiner, J. S., and Briggs, F. N. (1974). Calcium requirements for cardiac myofibrillar activation, Circ Res 34, 525–30.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. V., McClellan, G., Gonzalez-Serratos, H., and Somlyo, A. P. (1985). Electron probe X-ray microanalysis of post-tetanic Ca2+ and Mg2+ movements across the sarcoplasmic reticulum in situ, J Biol Chem 260, 6801–7.

    PubMed  CAS  Google Scholar 

  • Sorenson, M. M., da Silva, A. C., Gouveia, C. S., Sousa, V. P., Oshima, W., Ferro, J. A., and Reinach, F. C. (1995). Concerted action of the high affinity calcium binding sites in skeletal muscle troponin C, J. Biol Chem 270, 9770–7.

    PubMed  CAS  Google Scholar 

  • Spyracopoulos, L., Li, M. X., Sia, S. K., Gagne, S. M., Chandra, M., Solaro, R. J., and Sykes, B. D. (1997). Calcium-induced structural transition in the regulatory domain of human cardiac troponin C, Biochemistry 36, 12138–46.

    PubMed  CAS  Google Scholar 

  • Sundaralingam, M., Bergstrom, R., Strasburg, G., Rao, S. T., Roychowdhury, P., Greaser, M., and Wang, B.C. (1985). Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution, Science 227, 945–8.

    PubMed  CAS  Google Scholar 

  • Sweeney, H. L., Bowman, B. F., and Stull, J. T. (1993). Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function, Am J Physiol 264, C1085–95.

    PubMed  CAS  Google Scholar 

  • Szczesna, D., Ghosh, D., Li, Q., Gomes, A., Guzman, G., Arana, C., Zhi, G., Stull, J. T., and Potter, J. D. (2001). Familial hypertrophic cardiomyopathy mutations in the regulatory light chains of myosin affect their structure, Ca2+ binding and phosphorylation, J Biol Chem 276, 7086–7092.

    PubMed  CAS  Google Scholar 

  • Szczesna, D., Guzman, G., Miller, T., Zhao, J., Farokhi, K., Ellemberger, H., and Potter, J. D. (1996a). The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction, J Biol Chem 271, 8381–6.

    PubMed  CAS  Google Scholar 

  • Szczesna, D., Zhang, R., Zhao, J., Jones, M., Guzman, G., and Potter, J. D. (2000). Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy, J Biol Chem 275, 624–30.

    PubMed  CAS  Google Scholar 

  • Szczesna, D., Zhao, J., and Potter, J. D. (1996b). The regulatory light chains of myosin modulate crossbridge cycling in skeletal muscle, J Biol Chem 271, 5246–50.

    PubMed  CAS  Google Scholar 

  • Takahashi-Yanaga, F., Morimoto, S., and Ohtsuki, I. (2000). Effect of Arg145G1y mutation in human cardiac troponin I on the ATPase activity of cardiac myofibrils, J Biochem (Tokyo) 127, 355–7.

    CAS  Google Scholar 

  • Tobacman, L. S., Lin, D., Butters, C., Landis, C., Back, N., Pavlov, D., and Homsher, E. (1999). Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy, J Biol Chem 274, 28363–70.

    PubMed  CAS  Google Scholar 

  • Tsuda, S., Ogura, K., Hasegawa, Y., Yagi, K., and Hikichi, K. (1990). 1H NMR study of rabbit skeletal muscle troponin C: Mg2(+)-induced conformational change, Biochemistry 29, 4951–8.

    PubMed  CAS  Google Scholar 

  • Tung, C. S., Wall, M. E., Gallagher, S. C., and Trewhella, J. (2000). A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin, Protein Sci 9, 1312–26.

    PubMed  CAS  Google Scholar 

  • Valdivia, H. H. (1998). Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors, Trends Pharmacol Sci 19, 479–82.

    PubMed  CAS  Google Scholar 

  • van Eerd, J. P., and Takahashi, K. (1975). The amino acid sequence of bovine cardiac troponin-C. Comparison with rabbit skeletal troponin-C, Biochem Biophys Res Commun 64, 122–7.

    PubMed  Google Scholar 

  • Wannenburg, T., Heijne, G. H., Geerdink, J. H., Van Den Dool, H. W., Janssen, P. M., and De Tombe, P. P. (2000). Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation, Am J Physiol Heart Circ Physiol 279, H779–90.

    PubMed  CAS  Google Scholar 

  • Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R., O’Donoghue, A., Spirito, P., Matsumori, A., Moravec, C. S., Seidman, J. G., and et al. (1995). Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy, N Engl J Med 332, 1058–64.

    PubMed  CAS  Google Scholar 

  • Watterson, J. G., Kohler, L., and Schaub, M. C. (1979). Evidence for two distinct affinities in the binding of divalent metal ions to myosin, J Biol Chem 254, 6470–7.

    PubMed  CAS  Google Scholar 

  • Wibo, M., Bravo, G., and Godfraind, T. (1991). Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors, Circ Res 68, 662–73.

    PubMed  CAS  Google Scholar 

  • Xiong, H., Feng, X., Gao, L., Xu, L., Pasek, D. A., Seok, J. H., and Meissner, G. (1998). Identification of a two EF-hand Ca2+ binding domain in lobster skeletal muscle ryanodine receptor/Ca2+ release channel, Biochemistry 37, 4804–14.

    PubMed  CAS  Google Scholar 

  • Xu, A., and Narayanan, N. (2000). Reversible inhibition of the calcium-pumping ATPase in native cardiac sarcoplasmic reticulum by a calmodulin-binding peptide. Evidence for calmodulin-dependent regulation of the V(max) of calcium transport, J Biol Chem 275, 4407–16.

    PubMed  CAS  Google Scholar 

  • Yano, K., and Zarain-Herzberg, A. (1994). Sarcoplasmic reticulum calsequestrins: structural and functional properties, Mol Cell Biochem 135, 61–70.

    PubMed  CAS  Google Scholar 

  • Zhang, R., Zhao, J., and Potter, J. D. (1995). Phosphorylation of both serine residues in cardiac troponin I is required to decrease the Ca2+ affinity of cardiac troponin C, J Biol Chem 270, 30773–80.

    PubMed  CAS  Google Scholar 

  • Zot, A. S., and Potter, J. D. (1987). Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction, Annu Rev Biophys Biophys Chem 16, 535–59.

    PubMed  CAS  Google Scholar 

  • Zot, H. G., and Potter, J. D. (1982). A structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils, J Biol Chem 257, 7678–83.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gomes, A.V., Harada, K., Potter, J.D. (2002). Cation Signaling in Striated Muscle Contraction. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics