Skip to main content

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

Abstract

Excitation-contraction coupling concerns the processes linking electrical excitation of the surface membrane to contraction. As shown in Fig. 1 A, the action potential produces a systolic increase of calcium that then activates contraction. This chapter will focus on the control of calcium and will largely ignore the contractile protein mechanisms that follow the increase of Ca. These events are described in detail in other chapters. Equally, on grounds of space, we will largely ignore the whole field of pharmacological modulation of e-c coupling. The reader is directed to the following books for recent summaries of the broad field of cardiac electrophysiology and contraction (Bers, 2001;Zipes & Jalife, 2000;Sperelakis et al., 2001). An overview of cellular Ca handling is shown in Fig. 1A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi-Akahane, S., Cleemann, L., & Morad, M. (1996). Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes. Journal of General Physiology 108, 435–454.

    Article  PubMed  CAS  Google Scholar 

  • Adams, W. A., Trafford, A. W., & Eisner, D. A. (1998). 2,3-butanedione monoxime (BDM) decreases sarcoplasmic reticulum Ca content by stimulating Ca release in isolated rat ventricular myocytes. Pflügers Archiv 436, 776–781.

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal, R., Shorofsky, S. R., Goldman, L., & Balke, C. W. (1997). Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. Journal of Physiology 505, 353–369.

    Article  PubMed  CAS  Google Scholar 

  • Allen, D. G., Eisner, D. A., Lab, M. J., & Orchard, C. H. (1983). The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. Journal of Physiology 345, 391–407.

    PubMed  CAS  Google Scholar 

  • Allen, D. G. & Kurihara, S. (1980). Calcium transients in mammalian ventricular muscle. European HeartJournal 1, 5–15.

    Article  Google Scholar 

  • Antoine, S., Pinet, C., & Coulombe, A. (2001). Are B-type Ca2+ channels of cardiac myocytes akin to the passive ion channel in the plasma membrane Ca2+ pump? Journal of Membrane Biology 179, 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Ballard, C., Mozaffain, M., & Schaffer, S. (1994). Signal transduction mechanism for the stimulation of the Na+/Ca2+ exchanger by insulin. Molecular and Cellular Biochemistry 135, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Ballard, C. & Schaffer, S. (1996). Stimulation of Na+/Ca2+ exhanger by phenylephrine, angiotensin II and endothelin 1. Journal of Molecular and Cellular Cardiology 28, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Barcenas-Ruiz, L., Beuckelmann, D. J., & Wier, W. G. (1987). Sodium-calcium exchange in heart: Membrane currents and changes in [Ca2+]i. Science 238, 1720–1722.

    Article  PubMed  CAS  Google Scholar 

  • Barcenas-Ruiz, L. & Wier, W. G. (1987). Voltage dependence of intracellular (Ca2+)i transients in guinea pig ventricular myocytes. Circulation Research 61, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Barry, W. H., Rasmussen, C. A., Jr., Ishida, H., & Bridge, J. H. (1986). External Na-independent Ca extrusion in cultured ventricular cells Magnitude and functional significance. Journal of General Physiology 88, 393–41 1.

    Google Scholar 

  • Bassani, J. W. M., Yuan, W., & Bers, D. M. (1995a). Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. American Journal of Physiology 268, C 1313–C 1329.

    CAS  Google Scholar 

  • Bassani, R. A., Bassani, J. W. M., & Bers, D. M. (1995b). Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase. Pflügers Archiv 430, 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Beeler, G. W. & Reuter, H. (1970). The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. Journal of Physiology 207, 211–229.

    PubMed  CAS  Google Scholar 

  • Berlin, J. R., Bassani, J. W. M., & Bers, D. M. (1994). Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophysical Journal 67, 1775–1787.

    Article  PubMed  CAS  Google Scholar 

  • Bers, D. M. (1985). Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. American Journal of Physiology 248, H366-H381.

    PubMed  CAS  Google Scholar 

  • Bers, D. M. (2001). Excitation-Contraction Coupling and Cardiac Contractile Force., 2 ed. Kluwer Academic Publishers, Dordrecht/Boston/London.

    Book  Google Scholar 

  • Bers, D. M. & Bridge, J. H. B. (1988). Effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricle. Journal of Physiology 404, 53–69.

    PubMed  CAS  Google Scholar 

  • Beuckelmann, D. J. & Wier, W. G. (1988). Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. Journal of Physiology 405, 233–255.

    PubMed  CAS  Google Scholar 

  • Beuckelmann, D. J. & Wier, W. G. (1989). Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. Journal of Physiology 414, 499–520.

    PubMed  CAS  Google Scholar 

  • Bielen, F. V., Glitsch, H. G., & Verdonck, F. (1991). Changes of the subsarcolemmal Na+ concentration in internally perfused cardiac cells. Biochimica et Biophysica Acta 1065, 269–271.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein, M. P. & Lederer, W. J. (1999). Sodium/calcium exchange: its physiological implications. Physiological Reviews 79, 763–854.

    PubMed  CAS  Google Scholar 

  • Bouchard, R. A., Clark, R. B., & Giles, W. R. (1993). Role of sodium-calcium exchange in activation of contraction in rat ventricle. Journal of Physiology 472, 391–413.

    PubMed  CAS  Google Scholar 

  • Boyden, P. A., Pu, J., Pinto, J., & ter Keurs, H. E. D. J. (2000). Ca2+ transients and Ca2+ waves in Purkinje cells. Role in action potential initiation. Circulation Research 86, 448–455.

    Article  PubMed  CAS  Google Scholar 

  • Brillantes, A.-M. B., Ondrias, K., Scott, A., Kobrinsky, E., Ondriasova, E., Moschella, M. C., Jayaraman, T., Landers, M., Ehrlich, B. E., & Marks, A. R. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Cachelin, A. B., DePeyer, J. E., Kokubun, S., & Reuter, H. (1983). Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304, 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K. P., MacLennan, D. H., Jorgensen, A. O., & Mintzer, M. C. (1983). Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. Journal of Biological Chemistry 258, 1197–1204.

    PubMed  CAS  Google Scholar 

  • Cannell, M. B., Berlin, J. R., & Lederer, W. J. (1987). Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, M. B., Cheng, H., & Lederer, W. J. (1994). Spatial Non-Uniformities of [Ca2+]i during excitation-Contraction Coupling in Cardiac Myocytes. Biophysical Journal 67, 1942–1956.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, M. B., Cheng, H., & Lederer, W. J. (1995). The control of calcium release in heart muscle. Science 268, 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E. (1985). The homeostasis of calcium in heart cells. Journal of Molecular and CellularCardiology 17, 203–212.

    Article  CAS  Google Scholar 

  • Carmeliet, E. (1992). A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovascular Research 26, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R. A. & Léoty, C. (1976). The time-dependent and dose-dependent effects of caffeine on the contraction of the ferret heart. Journal of Physiology 256, 287–314.

    PubMed  CAS  Google Scholar 

  • Cheng, H., Cannell, M. B., & Lederer, W. J. (1995). Partial inhibition of Ca2+ current by methoxyverapamil (D600) reveals spatial nonuniformities in [Ca2+]i during excitation contraction coupling in cardiac myocytes. Circulation Research 76, 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Lederer, M. R., Lederer, W. J., & Cannell, M. B. (1996). Calcium sparks and [Ca2+]i waves in cardiac myocytes. American Journal of Physiology 270, C 148–C 159.

    CAS  Google Scholar 

  • Cheng, H., Lederer, W. J., & Cannell, M. B. (1993). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H. S. & Eisner, D. A. (1999). The role of the sarcolemmal Ca-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. Journal of Physiology 515, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H. S., Trafford, A. W., & Eisner, D. A. (2000a). Measurement of calcium entry and exit in quiescent rat ventricular myocytes. Pflügers Archiv 440, 600–608.

    PubMed  CAS  Google Scholar 

  • Choi, H. S., Trafford, A. W., Orchard, C. H., & Eisner, D. A. (2000b). The effect of acidosis on systolic Ca and sarcoplasmic reticulum Ca content in isolated rat ventricular myocyes. Journal of Physiology 529, 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Cleemann, L., Wang, W., & Morad, M. (1998). Two-dimentional confocal images of organisation, density and gating of focal Ca2+ release sites in rat cardiac myocytes. Proceedings of the National Academy of Sciences, USA. 95, 10984–10989.

    Article  CAS  Google Scholar 

  • Collier, M. L., Thomas, A. P., & Berlin, J. R. (1999). Relationship between L-type Ca2+ current and unitary sarcoplasmic reticulum Ca2+ release events in rat ventricular myocytes. Journal of Physiology 516, 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro, J. M., Spitzer, K. W., Giles, W. R., Ershler, P. E., Cannell, M. B., & Bridge, J. H. B. (2001). Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. The Journal of Physiology 531, 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Coulombe, A., Lefèvre, I. A., Baró, I., & Coraboeuf, E. (1989). Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. Journal of MembraneBiology 111, 57–67.

    Article  CAS  Google Scholar 

  • Cruz, J. S., Santana, L. F., Frederick, C. A., Isom, L. L., Malhotra, J. D., Mattei, L. N., Kass, R. S., Xia, J., An, R.-H., & Lederer, W. J. (1999). Whether “slip-mode conductance” occurs. Science 284, 711a.

    Article  Google Scholar 

  • Cui, Y., Galione, A., & Terrar, D. A. (1999). Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochemical Journal 342, 269–273.

    Article  PubMed  CAS  Google Scholar 

  • DelPrincipe, F., Egger, M., & Niggli, E. (1999). Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. Nature Cell Biology 1, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • DiPolo, R. & Beaugé, L. (1979). Physiological role of ATP-driven calcium pump in squid axon. Nature 278, 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Díaz, M. E., Trafford, A. W., & Eisner, D. A. (2001). The role of intracellular Ca buffers in determining the shape of the systolic Ca transient in cardiac ventricular myocytes. Pflügers Archiv 442, 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Díaz, M. E., Trafford, A. W., O’Neill, S. C., & Eisner, D. A. (1997). Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release. Journal of Physiology 501, 3–16.

    Article  PubMed  Google Scholar 

  • Ehara, T., Matsuoka, S., & Noma, A. (1989). Measurement of reversal potential of Na+-Ca++ exchange current in single guinea-pig ventricular cells. Journal of Physiology 410, 227–249.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A. (1990). Intracellular sodium in cardiac muscle: effects on contraction. Experimental Physiology 75, 437–457.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A., Choi, H. S., Díaz, M. E., O’Neill, S. C., & Trafford, A. W. (2000). Integrative analysis of calcium cycling in cardiac muscle. Circulation Research 87, 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, D. A. & Trafford, A. W. (2000). No role for the ryanodine receptor in regulating cardiac contraction? News in Physiological Sciences 15, 275–279.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A., Trafford, A. W., Díaz, M. E., Overend, C. L., & O’Neill, S. C. (1998). The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovascular Research 38, 589–604.

    Article  PubMed  CAS  Google Scholar 

  • Endoh, M. & Blinks, J. R. (1988). Actions of sympathomimetic amines on the Ca2+ transient and contraction of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through oα- and β-adrenoceptors. Circulation Research 62, 247–265.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. M. & Cannell, M. B. (1997). The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocyte. Cardiovascular Research 35, 294–302.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology 245, C 1–C 14.

    CAS  Google Scholar 

  • Fabiato, A. (1985a). Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell. Journal of General Physiology 85, 291–320.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A. (1985b). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. Journal of General Physiology 85, 247–289.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, G. R. & Howlett, S. E. (1995). Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents. Journal of Physiology 484, 107–122.

    PubMed  CAS  Google Scholar 

  • Ferrier, G. R., Saunders, J. H., & Mendez, C. (1973). A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circulation Research 32, 600–609.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, G. R., Zhu, J., Redondo, I. M., & Howlett, S. E. (1998). Role of c-AMP-dependent protein kinase A in activation of a voltage-sensitive release mechanism for cardiac contraction in guinea-pig myocytes. Journal of Physiology 513, 185–201.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, G. R. & Howlett, S. E. (2001). Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction. American Journal of Physiology 280, H 1 928–H 1944.

    CAS  Google Scholar 

  • Fujioka, Y., Komeda, M., & Matsuoka, S. (2000). Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. Journal of Physiology 523, 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka, Y., Matsuoka, S., Ban, T., & Noma, A. (1998). Interaction of the Na+-K+ pump and Na+-Ca2+ exchange via [Na+]i in a restricted space of guinea-pig ventricular cells. The Journal of Physiology 509, 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Galione, A. (1993). Cyclic ADP-ribose: a new way to control calcium. Science 259, 325–326.

    Article  PubMed  CAS  Google Scholar 

  • García, J., Tanabe, T., & Beam, K. G. (1994). Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. Journal of General Physiology 103, 125–147.

    Article  PubMed  Google Scholar 

  • González, A. & Rios, E. (2001). Excitation-contraction coupling in skeletal muscle., eds. Moss, R. L. & Solaro, R. J., Kluwer.

    Google Scholar 

  • Grantham, C. J. & Cannell, M. B. (1996). Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circulation Research 79, 194–200.

    Article  PubMed  CAS  Google Scholar 

  • Guatimosim, S., Sobie, E. A., dos Santos Cruz, J., Martin, L. A., & Lederer, W. J. (2001). Molecular identification of a TTX-sensitive Ca2+ current. American Journal ofPhysiology 280, C l 327–C l 339.

    Google Scholar 

  • Györke, S. & Fill, M. (1993). Ryanodinereceptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart. Science 260, 807–809.

    Article  PubMed  Google Scholar 

  • Györke, S., Lukyanenko, V., & Györke, I. (1997). Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. Journal of Physiology 500, 297–309.

    PubMed  Google Scholar 

  • Györke, S., Vélez, P., Suáre-Isla, B., & Fill, M. (1994). Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+. Biophysical Journal 66, 1879–1886.

    Article  PubMed  Google Scholar 

  • Hammes, A., Oberdorff-Maass, S., Rother, T., Nething, K., Gollnick, F., Linz, K. W., Meyer, R., Hu, K., Han, H., Gaudron, P., Ertl, G., Hoffmann, S., Gantan, U., Vetter, R., Schuh, K., Benkwitz, C., Zimmer, H. G., & Neyses, L. (1998). Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circulation Research 83, 877–888.

    Article  PubMed  CAS  Google Scholar 

  • He, Z., Feng, S., Tong, Q., Hilgemann, D. W., & Philipson, K. D. (2000). Interaction of PIP2 with the XIP region of the cardiac Na/Ca exchanger. American Journal of Physiology 278, C661-C666.

    PubMed  CAS  Google Scholar 

  • Hess, P. & Tsien, R. W. (1984). Mechanism of ion permeation through calcium channels. Nature 309, 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P. & Wier, W. G. (1984). Excitation-contraction coupling in cardiac Purkinje fibers. Effects of caffeine on the intracellular [Ca2+] transient, membrane currents, and contraction. Journal of General Physiology 83, 417–433.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, M. J., Shigekawa, M., & Katz, A. M. (1979). Mechanism by which cyclic adenosine 3′:5′-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circulation Research 44, 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann, D. W. (1990). Regulation and deregulation of cardiac Na-Ca exchange in giant excised sarcolemmal membrane patches. Nature 344, 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Hittinger, L., Ghalen, B., Chen, J., Edwards, J. G., Kudej, R. K., Iwase, M., Kim, S., Vatner, D. E. (1999). Reduced subendocardial ryanodine receptors and consequent effects on cardiac function in conscious dogs with left ventricular hypertrophy. Circulation Research 84, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Hobai, I. A., Howarth, F. C., Pabbathi, V. K., Dalton, G. R., Hancox, J. C., Zhu, J.-Q., Howlett, S. E., Ferrier, G. R., & Levi, A. J. (1997). “Voltage-activated Ca release” in rabbit, rat and guinea-pig ardiac myocytes, and modulation by internal cAMP. Pflügers Archiv 435, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, F., Lacinova, L., & Klugbauer, N. (1999). Voltage-dependent calcium channels: from structure to function. Reviews of Physiology Biochemistry and Pharmacology 139, 33–87.

    Article  CAS  Google Scholar 

  • Hussain, M. & Orchard, C. H. (1997). Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during b-adrenergic stimulation. Journal of Physiology 505, 385–402.

    Article  PubMed  CAS  Google Scholar 

  • Hüser, J., Lipsius, S. L., & Blatter, L. A. (1996). Calcium Gradients during excitation-contraction coupling in cat atrial myocytes. Journal of Physiology 494, 641–651.

    PubMed  Google Scholar 

  • Iino, S., Cui, Y., Galione, A., & Terrar, D. A. (1997). Actions of cADP-Ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes: Influence of temperature. Circulation Research 81, 879–884.

    Article  PubMed  CAS  Google Scholar 

  • Imredy, J. P. & Yue, D. T. (1992). Submicroscopic Ca 2+ diffusion mediates inhibitory coupling between individual Ca2+ channels. Neuron 9, 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Inesi, G. & De Meis, L. (1989). Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage and slippage of the calcium pump. Journal of Biological Chemistry 264, 5929–5936.

    PubMed  CAS  Google Scholar 

  • Isenberg, G. (1982). Ca entry and contraction as studied in isolated bovine ventricaular myocytes. Zeitschrift Fur Naturforschung 37, 502–512.

    CAS  Google Scholar 

  • Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ranesh, V., Franzini-Armstrong, C., Cleemann, L., & Morad, M. (1998). Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. Journal of Clinical Investigation 101, 1385–1393.

    Article  PubMed  CAS  Google Scholar 

  • Junker, J., Sommer, J. R., Sar, M., & Meissner, G. (1994). Extended junctional sarcoplasmic reticulum of avian cardiac muscle contains functional ryanodine receptors. Journal of Biological Chemistry 269, 1627–1634.

    PubMed  CAS  Google Scholar 

  • Kirby, M. S., Sagara, Y., Gaa, S., Lnesi, G., Lederer, W. J., & Rogers, T. B. (1992). Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. Journal of Biological Chemistry 267, 12545–12551.

    PubMed  CAS  Google Scholar 

  • Kirschenlohr, H. L., Grace, A. A., Vandenberg, J. I., Metcalfe, J. C., & Smith, G. A. (2000). Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart. Biochemical Journal 346, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Kohmoto, O., Levi, A. J., & Bridge, J. H. B. (1994). Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calciumrelease in guinea pig ventricular cells. Circulation Research 74, 550–554.

    Article  CAS  Google Scholar 

  • Kurihara, S. & Sakai, T. (1985). Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea-pig. Journal of Physiology 361, 361–378.

    PubMed  CAS  Google Scholar 

  • Lamont, C. & Eisner, D. A. (1996). The sarcolemmal mechanisms involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflügers Archiv 432, 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Langer, G. A. & Peskoff, A. (1996). Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophysical Journal 70, 1169–1182.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, N. & Hume, J. R. (1990). Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre, T., Coulombe, A., & Coraboeuf, E. (1994). Tonically active (background) calcium channels unmasked by phenothiazines in rat ventricular myocytes. Biophysical Journal 66, a321.

    Google Scholar 

  • Levi, A. J., Brooksby, P., & Hancox, J. C. (1993). A role for depolarisation induced calcium entry on the Na-Ca exchange in triggering intracellular calcium release and contraction in rat ventricular myocytes. Cardiovascular Research 27, 1677–1690.

    Article  PubMed  CAS  Google Scholar 

  • Levi, A. J., Li, J., Litwin, S. E., & Spitzer, K. W. (1996). Effect of internal sodium and cellular calcium load on voltage-dependence of the Indo-1 transient in guinea-pig ventricular myocytes. Cardiovascular Research 32, 534–550.

    PubMed  CAS  Google Scholar 

  • Lewartowski, B., Janiak, R., & Langer, G. A. (1996). Effect of sarcoplasmic reticulum Ca release into diadic region on Na/Ca exchange in cardiac myocytes. Journal of Physiology and Pharmacology 47, 577–590.

    PubMed  CAS  Google Scholar 

  • Li, L., Chu, G., Kranias, E. G., & Bers, D. M. (1998). Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. American Journal of Physiology 274, H 1335–H 1347.

    CAS  Google Scholar 

  • Li, L., Desantiago, J., Chu, G., Kranias, E. G., & Bers, D. M. (2000). Phosphorylation of phopholamban and troponin I in b-adrenergic-induced acceleration of cardiac relaxation. American Journal of Physiology 278, H769–H779.

    PubMed  CAS  Google Scholar 

  • Lipp, P., Laine, M., Tovey, S. C., Burrell, K. M., Berridge, M. J., Li, W., & Bootman, M. D. (2000). Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr.Biol. 10, 939–942.

    Article  PubMed  CAS  Google Scholar 

  • Lipp, P. & Niggli, E. (1994). Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. Journal of Physiology 474, 439–446.

    PubMed  CAS  Google Scholar 

  • Lipp, P. & Niggli, E. (1996). Submicroscopic calcium signals as fundamental events of excitationcontraction coupling in guinea-pig cardiac myocytes. Journal of Physiology 492, 31–38.

    PubMed  CAS  Google Scholar 

  • Lipp, P. & Niggli, E. (1998). Fundamental calcium release events revealed by two photon excitation photolysis of caged calcium in guinea pig cardiac myocytes. Journal ofPhysiology 508, 801–809.

    Article  CAS  Google Scholar 

  • Litwin, S. E., Li, J., & Bridge, J. H. B. (1998). Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophysical Journal 75, 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Litwin, S. E., Zhang, D., & Bridge, J. H. (2000). Dyssynchronous Ca2+ sparks in myocytes from infarcted hearts. Circulation Research 87, 1040–1047.

    Article  PubMed  CAS  Google Scholar 

  • Lokuta, A. J., Meyers, M. B., Sander, P. R., Fishman, G. L., & Valdivia, H. H. (1997). Modulation of Cardiac Ryanodine Receptors by Sorcin. Journal of Biological Chemistry 272 , 25333–25338.

    Article  PubMed  CAS  Google Scholar 

  • London, B. & Krueger, J. W. (1986). Contraction in voltage-clamped, internally perfused single heart cells. Journal of General Physiology 88, 475–505.

    Article  PubMed  CAS  Google Scholar 

  • López-López, J. R., Shacklock, P. S., Balke, C. W., & Wier, W. G. (1994). Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy. Journal of Physiology 480, 21–29.

    PubMed  Google Scholar 

  • López-López, J. R., Shacklock, P. S., Balke, C. W., & Wier, W. G. (1995). Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268, 1042–1045.

    Article  PubMed  Google Scholar 

  • Lukyanenko, V., Györke, I., & Györke, S. (1996). Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflügers Archiv 432, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Lukyanenko, V., Györke, I., Wiesner, T. F. & Györke, S. (2001). Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circulation Research 89, 614–622.

    Article  PubMed  CAS  Google Scholar 

  • Lukyanenko, V., Subramanian, S., Györke, I., Wiesner, T. F., & Györke, S. (1999). The role of luminal Ca in the generation of Ca waves in rat ventricular myocytes. Journal of Physiology 518, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • Lukyanenko, V., Wiesner, T. F., & Gyorke, S. (1998). Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. Journal of Physiology 507, 667–677.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, L., Bootman, M. D., Berridge, M. J., & Lipp, P. (2001). Predetermined recruitment of calcium release sites underlies excitation- contraction coupling in rat atrial myocytes. Journal of Physiology 530, 417–429.

    Article  PubMed  CAS  Google Scholar 

  • Marban, E. & Wier, W. G. (1985). Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers. Circulation Research 56, 13 3–13 8.

    Article  CAS  Google Scholar 

  • Marx, S. O., Ondrias, K., & Marks, A. R. (1998). Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281, 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., & Marks, A. R. (2000). PKA phosphorylation dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, S. & Hilgemann, D. W. (1992). Steady-state and dynamic properties of the cardiac Na/Ca exchange cycle. Ion and voltage dependences of the transport cycle. Journal of General Physiology 100, 963–1001.

    Article  PubMed  CAS  Google Scholar 

  • McIvor, M. E., Orchard, C. H., & Lakatta, E. G. (1988). Dissociation of changes in apparent myofibrillar Ca2+ sensitivity and twitch relaxation induced by adrenergic and cholinergic stimulation in isolated ferret cardiac muscle. Journal of General Physiology 92, 509–529.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, G. (1994). Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annual Review of Physiology 56, 485–508.

    Article  PubMed  CAS  Google Scholar 

  • Meme, W., O’Neill, S. C., & Eisner, D. A. (2001). Low sodium inotropy is accompanied by diastolic Ca2+ gain and systolic loss in isolated guinea-pig ventricular myocytes. Journal of Physiology 530, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, M. B., Puri, T. S., Chien, A. J., Gao, T., Hsu, P. H., Hosey, M. M., & Fishman, G. I. (1998). Sorcin Associates with the Pore-forming Subunit of Voltage-dependent L-type Ca2+ Channels. Journal of Biological Chemistry 273 , 18930–18935.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, M. B., Zamparelli, C., Verzili, D., Dicker, A. P., Blanck, T. J., & Chiang, B. N. (1995a). Calcium-dependent translocation of sorcin to membranes: functional relevance in contractile tissue. FEBS Letters 357, 230–4.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, M. B., Pickel, V. M., Sheu, S. S., Sharma, V. K., Scotto, K. W., & Fishman, G. I. (1995b). Association of Sorcin With the Cardiac Ryanodine Receptor. Journal of Biological Chemistry 270, 264 1 1–264 1 8.

    CAS  Google Scholar 

  • Mészáros, L. G., Bak, J., & Chu, A. (1993). Cyclic ADP-ribose as an endogenous regulator of the nonskeletal type ryanodine receptor Ca2+ channel. Nature 364, 76–79.

    Article  PubMed  Google Scholar 

  • Mitchell, R. D., Simmerman, H. K. B., & Jones, L. R. (1988). Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. Journal of Biological Chemistry 263, 1376–1381.

    PubMed  CAS  Google Scholar 

  • Mitcheson, J. S., Hancox, J. C., & Levi, A. J. (1997). Voltage dependence of the Fura-2 transient in rabbit left atrial myocytes at 37 degrees C. Pflügers Archiv 433, 817–826.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Robertson, M., Liu, G., Dickie, P., Nakamura, K., Guo, J. Q., Duff, J., Opas, M., Kavanagh, K., & Michalak, M. (2001). Complete heart block and sudden death in mice overexpressing calreticulin. Journal of Clinical Investigation 107, 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Näbauer, M., Callewaert, G., Cleemann, L., & Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803.

    Article  PubMed  Google Scholar 

  • Näbauer, M. & Morad, M. (1990). Ca2+-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. American Journal of Physiology 258, C 189–C 193.

    Google Scholar 

  • Negretti, N., O’Neill, S. C., & Eisner, D. A. (1993). The effects of inhibitors of sarcoplasmic reticulum function on the systolic Ca2+ transient in rat ventricular myocytes. Journal of Physiology 468, 35–52.

    PubMed  CAS  Google Scholar 

  • Niggli, E. & Lederer, W. J. (1990). Voltage-independent calcium release in heart muscle. Science 250, 565–568.

    Article  PubMed  CAS  Google Scholar 

  • Nuss, H. B. & Houser, S. R. (1992). Sodium-calcium exchange-mediated contractions in feline ventricular myocytes. American Journal of Physiology 263, H1161–H1169.

    PubMed  CAS  Google Scholar 

  • Nuss, H. B. & Marban, E. (1999). Whether “Slip-mode conductance” occurs. Science 284, 711a.

    Article  Google Scholar 

  • O’Neill, S. C., Donoso, P., & Eisner, D. A. (1990). The role of [Ca2+]i and [Ca2+]i-sensitization in the caffeine contracture of rat myocytes: measurement of [Ca2+]i and [caffeine]i. Journal of Physiology 425, 55–70.

    PubMed  Google Scholar 

  • O’Neill, S. C. & Eisner, D. A. (1990). A mechanism for the effects of caffeine on Ca2+ release during diastole and systole in isolated rat ventricular myocytes. Journal of Physiology 430, 519–536.

    PubMed  Google Scholar 

  • Orchard, C. H., Eisner, D. A., & Allen, D. G. (1983). Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 304, 735–738.

    Article  PubMed  CAS  Google Scholar 

  • Osterrieder, W., Brum, G., Hescheler, J., & Trautwein, W. (1982). Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298, 576–578.

    Article  PubMed  CAS  Google Scholar 

  • Overend, C. L., Eisner, D. A., & O’Neill, S. C. (1997). The effect of tetracaine on spontaneous Ca release and sarcoplasmic reticulum calcium content in rat ventricular myocytes. Journal of Physiology 502, 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Overend, C. L., O’Neill, S. C., & Eisner, D. A. (1998). The effect of tetracaine on stimulated contractions, sarcoplasmic reticulum Ca2+ content and membrane current in isolated rat ventricular myocytes. Journal of Physiology 507, 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Papp, Z., Sipido, K. R., Callewaert, G., & Carmeliet, E. (1995). Two components of [Ca2+]i activated chloride current during large [Ca2+]i transients in single rabbit heart purkinje cells. Journal of Physiology 483, 319–330.

    PubMed  CAS  Google Scholar 

  • Perchenet, L., Hinde, A. K., Patel, K. C., Hancox, J. C., & Levi, A. J. (2000). Stimulation of Na/Ca exchange by the beta-adrenergic/protein kinase A pathway in guinea-pig ventricular myocytes at 37 degrees C. Pflügers Archiv 439, 822–828.

    Article  PubMed  CAS  Google Scholar 

  • Philipson, K. D. & Nicoll, D. A. (2000). Sodium-calcium exchange: a molecular perspective. Annual Review of Physiology 62, 111–133.

    Article  PubMed  CAS  Google Scholar 

  • Piacentino III, V., Dipla, K., Gaughan, J. P., & Houser, S. R. (2000). Voltage-dependent Ca2+ release from the SR of feline ventricular myocytes is explained by Ca2+-induced Ca2+ release. Journal of Physiology 523, 533–548.

    Article  PubMed  CAS  Google Scholar 

  • Prestle, J., Janssen, P. M. L., Janssen, A. P., Zeitz, O., Lehnart, S. E., Bruce, L., Smith, G. L., & Hasenfuss, G. (2001). Overexpression of FK506-Binding Protein FKBP 12.6 in Cardiomyocytes Reduces Ryanodine Receptor-Mediated Ca2+ Leak From the Sarcoplasmic Reticulum and Increases Contractility. Circulation Research 88, 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Rakovic, S., Galione, A., Ashamu, G. A., Potter, B. V. L., & Terrar, D. A. (1996). A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Current Biology 6, 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, J. P. & Hale, C. C. (1984). The stoichiometry of the cardiac sodium-calcium exchange system. Journal ofBiological Chemistry 259, 7733–7739.

    CAS  Google Scholar 

  • Rousseau, E. & Meissner, G. (1989). Single cardiac sarcoplasmic reticulum Ca2+-release channel: a activation by caffeine. American Journal of Physiology 256, H328–H333.

    PubMed  CAS  Google Scholar 

  • Rousseau, E., Smith, J. S., Henderson, J. S., & Meissner, G. (1986). Single channel and 45Ca2+ flux measurements of cardiac sarcoplasmic reticulum calcium channel. Biophysical Journal 50, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  • Santana, L. F., Gómez, A. M., & Lederer, W. J. (1998). Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, H., Blatter, L. A., & Bers, D. M. (1997). Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. American Journal of Physiology 272, H657–H668.

    PubMed  CAS  Google Scholar 

  • Scriven, D. R. L., Dan, P., & Moore, E. D. W. (2000). Distribution of proteins implicated in excitationcontraction coupling in rat ventricular myocytes. Biophysical Journal 79, 2682–2691.

    Article  PubMed  CAS  Google Scholar 

  • Shacklock, P. S., Wier, W. G., & Balke, C. W. (1995). Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. Journal of Physiology 487, 601–608.

    PubMed  CAS  Google Scholar 

  • Sham, J. S. K., Cleemann, L., & Morad, M. (1992). Gating of the cardiac Ca release channel: the role of Na+ current and Na+-Ca2+ exchange. Science 255, 850–853.

    Article  PubMed  CAS  Google Scholar 

  • Shan J. S. K., Cleemann, L., & Morad, M. (1995). F unctional coupling of Ca cnanneis ana ryanodine ptors in cardiac myocytes. Proceedings of the National Academy of Sciences, USA. 92, 121–125.

    Article  Google Scholar 

  • Shan, S. K., Song, L.-S., Chen, Y., Deng, L.-H., Stern, M. D., Lakatta, E. G., & Cheng, H. (1998). Mination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proceedings of the National Academy of Sciences, USA. 95, 15096–15101.

    Article  Google Scholar 

  • Shannon, T. R. & Bers, D. M. (1997). Assessment of intra-SR free [Ca] and buffering in rat heart. Biophysical Journal 73, 1524–1531.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, T. R., Ginsburg, K. S., & Bers, D. M. (2000). Reverse mode of the sarcoplasmic reticulum calcium-pump and load-dependant cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophysical Journal 78, 322–333.

    Article  PubMed  CAS  Google Scholar 

  • Shigekawa, M. & Iwamoto, T. (2001). Cardiac Na+-Ca2+ exchange. Circulation Research 88, 864–876.

    Article  PubMed  CAS  Google Scholar 

  • Sipido, K. R., Callewaert, G., & Carmeliet, E. (1995a). Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. CirculationResearch 76, 102–109.

    CAS  Google Scholar 

  • Sipido, K. R., Carmeliet, E., & Pappano, A. (1995b). Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. Journal of Physiology 489, 1–17.

    PubMed  CAS  Google Scholar 

  • Sipido, K. R., Carmeliet, E., & Van de Werf, F. (1998). T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. Journal of Physiology 508, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Sipido, K. R., Maes, M., & Van de Werf, F. (1997). Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. Circulation Research 81, 1034–1044.

    Article  PubMed  CAS  Google Scholar 

  • Sipido, K. R. & Wier, W. G. (1991). Flux of Ca2+ across the sarcoplasmic reticulum of guinea-pig cardiac cells during excitation-contraction coupling. Journal of Physiology 435, 605–630.

    PubMed  CAS  Google Scholar 

  • Sitsapesan, R., McGarry, S. J., & Williams, A. J. (1994). Cyclic ADP-ribose competes with ATP for the adenine nucleotide sites on the cardiac ryanodine receptor Ca2+ release channel. Circulation Research 75, 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Sitsapesan, R. & Williams, A. J. (1994). Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+- release channel by luminal Ca2+. Journal of Membrane Biology 137, 215–226.

    PubMed  CAS  Google Scholar 

  • Sitsapesan, R. & Williams, A. J. (1995). Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. American Journal of Physiology 268, C 1235–C 1240.

    CAS  Google Scholar 

  • Sitsapesan, R. & Williams, A. J. (1997). Regulation of current flow through ryanodine receptors by luminal Ca2+. Journal of Membrane Biology 159, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. A., Dixon, H. B. F., Kirschenlohr, H. L., Grace, A. A., Metcalfe, J. C., & Vandenberg, J. I. (2000). Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils. Biochemical Journal 346, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L., Valdeolmillos, M., Eisner, D. A., & Allen, D. G. (1988). Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles. Journal of General Physiology 92, 351–368.

    Article  PubMed  CAS  Google Scholar 

  • Soeller, C. & Cannell, M. B. (1997). Numerical simulation of local calcium movements during L-type caclium channel gating in the cardiac diad. Biophysical Journal 73, 97–111.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, J. R. (1995). Comparative anatomy: In praise of a powerful approach to elucidate mechanisms translating cardiac excitation into purposeful contraction. Journal of Molecular and Cellular Cardiology 27, 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, J. R. & Johnson, E. A. (1968). Cardiac muscle. A comparative study of purkinje fibres and ventricular fibres. Journal of Cell Biology 36, 497–526.

    Article  PubMed  CAS  Google Scholar 

  • Song, L.-S., Sham, J. S. K., Stern, M. D., Lakatta, E. G., & Cheng, H. (1998). Direct measurement of SR release flux by tracking Ca2+ spikes in rat cardiac myocytes. Journal of Physiology 512, 677–691.

    Article  PubMed  CAS  Google Scholar 

  • Song, L.-S., Stern, M. D., Lakatta, E. G., & Cheng, H. (1997). Partial depletion of sarcoplasmic reticulum calcium does not prevent calcium sparks in rat ventricular myocytes. Journal of Physiology 505, 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Song, L. S., Wang, S. Q., Xiao, R. P., Spurgeon, H., Lakatta, E. G., & Cheng, H. (2001). Beta-Adrenergic Stimulation Synchronizes Intracellular Ca2+ Release During Excitation-Contraction Coupling in Cardiac Myocytes. Circulation Research 88, 794–801.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, C. I. & Berlin, J. R. (1995). Control of sarcoplasmic reticulum calcium release during calcium loading in isolated rat ventricular myocytes. Journal of Physiology 488, 267–279.

    PubMed  CAS  Google Scholar 

  • Spencer, C. I. & Berlin, J. R. (1997). Calcium-induced release of strontium from the sarcoplasmicreticulum of rat cardiac ventricular myocytes. Journal of Physiology 504, 565–578.

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N., Kurachi, Y., Terzic, A., & Cohen, M. V. (2001). Heart Physiology and Pathophysiology, 4 ed., pp. 1–1261. Academic, San Diego.

    Google Scholar 

  • Spurgeon, H. A., Stern, D. M., Baartz, G., Raffaeli, S., Hansford, R. G., Talo, A., Lakatta, E. G., & Capogrossi, M. C. (1990). Simultaneous measurements of Ca2+, contraction and potential in cardiac myocytes. American Journal of Physiology 258, h574-h586.

    PubMed  CAS  Google Scholar 

  • Stern, M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. Biophysical Journal 63, 497–517.

    Article  PubMed  CAS  Google Scholar 

  • Strehler, E. E. & Zacharias, D. A. (2001). Role of Alternative Splicing in Generating Isoform Diversity Among Plasma Membrane Calcium Pumps. Physiological Reviews 81, 21–50.

    PubMed  CAS  Google Scholar 

  • Sun, X., Protasi, F., Takahashi, M., Takeshima, H., Ferguson, D. G., & Franzini-Armstrong, C. (1995). Molecular Architecture of Membranes Involved in Excitation-Contraction coupling of Cardiac Muscle. Journal of Cell Biology 129, 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Tada, M., Kirchberger, M. A., Repke, D. I., & Katz, A. M. (1974). The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. Journal of Biological Chemistry 249, 6174–6180.

    PubMed  CAS  Google Scholar 

  • Terracciano, C. M. (2001). Rapid inhibition of the Na+-K+ pump affects Na+-Ca2+ exchanger-mediated relaxation in rabbit ventricular myocytes. Journal of Physiology 533, 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Teshima, Y., Takahashi, N., Saikawa, T., Hara, M., Yasunaga, S., Hidaka, S., & Sakata, T. (2000). Diminished expression of sarcoplasmic reticulum Ca2+-ATPase and ryanodine sensitive Ca2+ channel mRNA in streptozotocin-induced diabetic rat heart. Journal of Molecular and Cellular Cardiology 32, 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Timerman, A. P., Onoue, H., Xin, H.-B., Barg, S., Copello, J., Wiederrecht, G., & Fleischer, S. (1996). Selective binding of FKBP 12.6 by the cardiac ryanodine receptor. Journal of Biological Chemistry 271, 20385–20391.

    Article  PubMed  CAS  Google Scholar 

  • Tinker, A. & Williams, A. J. (1993). Charged local anesthetics block ionic conduction in the sheep cardiac sarcoplasmic reticulum calcium release channel. Biophysical Journal 65, 852–864.

    Article  PubMed  CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., & Eisner, D. A. (1998a). Ca-activated chloride current and Na-Ca exchange have different timecourses during sarcoplasmic reticulum Ca release in ferret ventricular myocytes. Pflügers Archiv 435, 743–745.

    Article  PubMed  CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., & Eisner, D. A. (1998b). Ca-activated chloride current and Na-Ca exchange have different timecourses during sarcoplasmic reticulum Ca release in ferret ventricular myocytes. Pflügers Archiv 435, 743–745.

    Article  PubMed  CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., & Eisner, D. A. (2001). Coordinated control of cell Ca2+ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca2+ current. Circulation Research 88, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., Negretti, N., & Eisner, D. A. (1997). Enhanced calcium current and decreased calcium efflux restore sarcoplasmic reticulum Ca content following depletion. CirculationResearch 81, 477–484.

    CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., O’Neill, S. C., & Eisner, D. A. (1995). Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. Journal of Physiology 488, 577–586.

    PubMed  CAS  Google Scholar 

  • Trafford, A. W., Díaz, M. E., Sibbring, G. C., & Eisner, D. A. (2000). Modulation of CICR has no maintained effect on systolic Ca 2+: simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca2+ fluxes in rat ventricular myocytes. Journal of Physiology 522, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Tripathy, A., Xu, L., Pasek, D. A., & Meissner, G. (1999). Effects of 2,3-butanedione 2-monoxime on Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. Journal of Membrane Biology 169, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. W. (1983). Calcium channels in excitable membranes. Annual Review of Physiology 45, 341–358.

    Article  PubMed  CAS  Google Scholar 

  • Valdeolmillos, M., O’Neill, S. C., Smith, G. L., & Eisner, D. A. (1989). Calcium-induced calcium releaseactivates contraction in intact cardiac cells. Pflügers Archiv 413, 676–678.

    Article  PubMed  CAS  Google Scholar 

  • Valdivia, H. H. (1998). Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP I 2, two accessory proteins of ryanodine receptors. Trends in Pharmacological Sciences 19, 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Varro, A., Negretti, N., Hester, S. B., & Eisner, D. A. (1993). An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflügers Archiv 423, 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Vassort, G. & Alvarez, J. (1994). Cardiac T-type calcium current: pharmacology and roles in cardiac tissues. Journal of Cardiovascular Electrophysiology 5, 376–393.

    Article  PubMed  CAS  Google Scholar 

  • Vatner, D. E., Sato, N., Kiuchi, K., Shannon, R. P., & Vatner, S. F. (1994). Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 90, 1423–1430.

    Article  PubMed  CAS  Google Scholar 

  • Verma, A., Hirsch, D. J., & Snyder, S. H. (1992). Calcium pools mobilized by calcium or inositol 1,4,5-triposphate are differentially localized in rat heart and brain. Molecular Biology of the Cell 3, 621–631.

    PubMed  CAS  Google Scholar 

  • Vornanen, M., Shepherd, N., & Isenberg, G. (1994). Tension-voltage relations of single myocytes reflect Ca release triggered by Na/Ca exchange at 35°C but not at 23°C. American Journal of Physiology 267, C623-C632.

    PubMed  CAS  Google Scholar 

  • Wang, S. Q., Song, L. S., Lakatta, E. G., & Cheng, H. (2001). Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410, 592–596.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Cleemann, L., Jones, L. R., & Morad, M. (2000). Modulation of focal and global Ca2+ release in calsequestrin-overexpressing mouse cardiomyocytes. The Journal of Physiology 524, 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Wasserstrom, J. A. & Vites, A. M. (1997). The role of Na+-Ca2+ exchange in activation of excitationcontraction coupling in rat ventricular myocytes. Journal of Physiology 493, 529–542.

    Google Scholar 

  • Weber, C. R., Ginsburg, K. S., Philipson, K. D., Shannon, T. R., & Bers, D. M. (2001). Allosteric regulation of NalCa exchange current by cytosolic Ca in intact cardiac myocytes. Journal of General Physiology 117, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Wendt-Gallitelli, M. F., Voigt, T., & Isenberg, G. (1993). Microheterogeneity of subsarcolemmal sodium gradients, electron probe microanalysis in guinea-pig ventricular myocytes. Journal of Physiology 472, 33–44.

    PubMed  CAS  Google Scholar 

  • Wier, W. G., Kort, A. A., Stern, M. D., Lakatta, E. G., & Marban, E. (1983). Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proceedings of the National Academy of Sciences, USA. 80, 7367–7371.

    Article  CAS  Google Scholar 

  • Wolska, B. M., Stojanovic, M. O., Luo, W., Kranias, E. G., & Solaro, R. J. (1996). Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+. AmericanJournal of Physiology 271, C391–C397.

    CAS  Google Scholar 

  • Xu, L., Jones, R., & Meissner, G. (1993). Effects of local anesthetics on single channel behavior of skeletal muscle release channel. Journal of General Physiology 101, 207–233.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Mann, G., & Meissner, G. (1996). Regulation of cardiac Ca2+ release channel (Ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemicconditions. Circulation Research 79, 1 100–1109.

    Google Scholar 

  • Yamamoto, T., Yano, M., Kohno, M., Hisaoka, T., Ono, K., Tanigawa, T., Saiki, Y., Hisamatsu, Y., Ohkusa, T., & Matsuzaki, M. (1999). Abnormal Ca2+ release from cardiac sarcoplasmic reticulum in tachycardia-induced heart failure. Cardiovascular Research 44, 146–155.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z. & January, C. T. (1998). Both T- and L-Type Ca2+ Channels Can Contribute to ExcitationContraction Coupling in Cardiac Purkinje Cells. Biophysical Journal 74, 1830–1839.

    Article  PubMed  CAS  Google Scholar 

  • Zipes, D. P. & Jalife, J. (2000). Cardiac Electrophysiology: from cell to bedside, 3 ed., pp. 1–1111. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Zucchi, R. & Ronca-Testoni, S. (1997). The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacological Reviews 49, 1–51.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trafford, A.W., Eisner, D.A. (2002). Excitation-Contraction Coupling in Cardiac Muscle. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics