Skip to main content

The Frank -Starling Relationship: Cellular and Molecular Mechanisms

  • Chapter

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

Abstract

It is probably not an exaggeration to suggest that the modern era of cardiovascular research began with the classical studies of Otto Frank and Ernest Starling on the relationship between end diastolic volume and systolic function in the isolated heart (Frank, 1895; Patterson and Starling, 1914). From the standpoint of integrative physiology, their work provided a mechanism for linking cardiac output to peripheral vascular perturbations (blood volume, venous compliance, skeletal muscle activity, etc.) which can alter central venous pressure and, hence, the degree of stretch of the myocardial muscle fibers. Their findings, still valid, are central to our understanding of the events that take place in such situations as exercise, hemorrhage, and congestive heart failure. For the muscle physiologist, their work provided the challenge of explaining cardiac function in terms of the basic cellular and molecular mechanisms which control force generation and shortening in striated muscle fibers. This effort has continued to the present day. Building on recent advances in the areas of muscle ultrastructure, contractile protein function, and Ca2+ regulation, it is now possible to formulate a generally plausible mechanism which accounts, at least in large part, for the linkage between ventricular filling pressure and systolic performance. The intracellular signaling pathways which mediate this process remain to be clarified.

“The law of the heart is thus the same as the law of muscular tissue generally, that the energy of contraction, however measured, is a function of the length of the muscle fibre”. Starling, E.H., The Linacre Lecture on the Law of the Heart, 1918, Longmans, Green and Co., London.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikari, B.B. and Fajer, P.G. (1996) Myosin head orientation and mobility during isometric contraction: effects of osmotic compression, Biophys. J. 70, 1872–1880.

    PubMed  CAS  Google Scholar 

  • Akella, A.B., Ding, X.-L., Cheng, R., and Gulati, J. (1995) Diminished Ca2+ sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat, Circ. Res. 76, 600–606.

    PubMed  CAS  Google Scholar 

  • Allen, D.G., Jewell, B.R., and Murray, J.W. (1974) The contribution of activation processes to the length-tension relation of cardiac muscle, Nature 248, 509–513.

    Google Scholar 

  • Allen, D.G. and Kentish, J.C. (1985) The cellular basis of the length-tension relation in cardiac muscle, J. Mol. Cell. Cardiol. 17, 821–840.

    PubMed  CAS  Google Scholar 

  • Allen, D.G. and Kentish, J.C. (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length, J. Physiol.(Lond.) 407, 489–503.

    CAS  Google Scholar 

  • Allen, D. G. and Kurihara, S. (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle, J. Physiol. (Lond.) 327, 79–94.

    CAS  Google Scholar 

  • Allen, J.D. and Moss, R.L. (1987) Factors influencing the ascending limb of the sarcomere length-tension relationship in rabbit skinned muscle fibers, J. Physiol. (Lond.) 390, 119–136.

    CAS  Google Scholar 

  • Alvarez, B.V, Perez, N.G., Ennis, I.L., Camilion de Hurtado, M.C., and Cingolani, H.E. (1999) Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect, Circ. Res. 85, 716–722.

    PubMed  CAS  Google Scholar 

  • Arteaga, G.M., Palmiter, K.A., Leiden, J.M., and Solaro, R.J. (2000) Attenuation of length dependence of calcium activation in myofilaments of transgenic mouse hearts expressing slow skeletal troponin I, J. Physiol (Lond.) 526, 541–549.

    CAS  Google Scholar 

  • Bagni, M.A., Cecchi, G., and Colomo, F. (1990) Myofilament spacing and force generation in intact frog muscle fibres, J. Physiol. (Lond.) 430, 61–75.

    CAS  Google Scholar 

  • Balnave, C.D. and Allen, D.G. (1996) The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle, J. Physiol. (Londl.) 492, 705–113.

    CAS  Google Scholar 

  • Bluhm, W.F. and Lew, W.Y.W. (1995) Sarcoplasmic reticulum in cardiac length-dependent activation in rabbits, Am. J. Physiol. 269, H965-H972.

    PubMed  CAS  Google Scholar 

  • Brandt, P.W., Roemer, D., and Schachat, F.H. (1990) Co-operative activation of skeletal muscle thin filaments by rigor cross-bridges. The effect of troponin C extraction. J. Mol. Biol. 212, 473–480.

    PubMed  CAS  Google Scholar 

  • Bremel, R.D. and Weber, A. (1972) Cooperation within actin filament in vertebrate skeletal muscle, Nature 238, 97–101.

    CAS  Google Scholar 

  • Brenner, B. (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction, Proc. Nat. Acad. Sci. USA 85, 3265–3269.

    PubMed  CAS  Google Scholar 

  • Brenner, B., Yu, L.C., and Podolsky, R.J. (1984) X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths, Biophys. J. 46, 299–306.

    PubMed  CAS  Google Scholar 

  • Calaghan, S.O. and White, E. (1999) The role of calcium in the response of cardiac muscle to stretch, Prog. Biophys. Mol. Biol. 71, 59–90.

    PubMed  CAS  Google Scholar 

  • Cantino, M.E., Allen, T.S., and Gordon, A.M. (1993) Subsarcomeric distribution of calcium in demembranated fibers of rabbit psoas muscle. Biophys. J. 64, 211–222.

    PubMed  CAS  Google Scholar 

  • Caputo, C., Edman, K.A.P., Lou, F. and Sun, Y.-B. (1994) Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres, J. Physiol. (Lond.) 478, 137–148.

    CAS  Google Scholar 

  • Cazorla, O., Pascarel, C., Garnier, D., and LeGuennec, J.-Y. (1997) Resting tension participates in the modulation of active tension in isolated guinea pig ventricular myocytes, J. Mol. Cell. Cardiol. 29, 1629–637.

    PubMed  CAS  Google Scholar 

  • Cazorla, O., Vassort, G., Garnier, D., and LeGuennec, J.-Y. (1999) Length modulation of active force in rat cardiac myocytes, J. Mol. Cell. Cardiol. 31, 1215–1227.

    PubMed  CAS  Google Scholar 

  • Cazorla, O., Le Guennec, J.-Y., and White, E. (2000) Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts, J. Mol. Cell. Cardiol. 32, 735–744.

    PubMed  CAS  Google Scholar 

  • Cazorla, O., Wu, Y., Irving, T.C., and Granzier, H. (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes, Circ. Res. 88, 1028–1035.

    PubMed  CAS  Google Scholar 

  • Chalovich, J.M., Yu, L.C., and Brenner, B. (1991) Involvement of weak binding cross-bridges in force production in muscle, J. Muscle Res. Cell Motil. 12, 503–506.

    PubMed  CAS  Google Scholar 

  • Chandra, M., Rundell, V.L.M., Tardiff, J.C., Leinwand, L.A., DeTombe, P.P., and Solaro, R.J. (2001) Ca2+ activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T, Am. J. Physiol. 280, H705-H713.

    CAS  Google Scholar 

  • Choi, B.-R. and Salama, G. (2000) Simultaneous maps of optical action potentials and Ca2+ transients in guinea pig hearts: mechanisms underlying concordant alternans, J. Physiol. (Lond.) 529, 171–188.

    CAS  Google Scholar 

  • Claflin, D.R., Morgan, D.L., and Julian, F.J. (1998) The effect of length on the relationship between tension and intracellular [Ca2+] in intact frog skeletal muscle fibres, J. Physiol. (Lond.) 508, 179–186.

    CAS  Google Scholar 

  • Close, R.I. (1972) The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscle, J. Physiol. (Lond.) 220, 745–762.

    CAS  Google Scholar 

  • Cooke, R. and Franks, K. (1980) All myosin heads form bonds with actin in rigor rabbit muscle, Biochemistry 19, 2265–2269.

    PubMed  CAS  Google Scholar 

  • Crozatier, B. (1996) Stretch-induced modifications of myocardial performance: from ventricular function to cellular and molecular mechanisms, Cardiovasc. Res. 32, 25–37.

    PubMed  CAS  Google Scholar 

  • de Beer, E.L., Grundeman, R.L.F., Wilhelm, A.J., Caljouw, C.J., Klepper, D., and Schiereck, P. (1988) Caffeine suppresses length dependency of Ca2+ sensitivity of skinned striated muscle, Am. J. Physiol. 254, C491-C497.

    PubMed  Google Scholar 

  • de Beer, E.L., Grundeman, R.L.F., Wilhelm, A.J., van den Berg, C., Caljouw, C.J., Klepper, D., and Schiereck, P. (1988) Effect of sarcomere length and filament lattice spacing on force development in skinned cardiac and skeletal muscle preparations from the rabbit, Bas. Res. Cardiol. 83, 410–423.

    Google Scholar 

  • Edman, K.A.P. (1975) Mechanical deactivation induced by active shortening in isolated muscle fibers of the frog, J. Physiol. (Lond.) 246, 255–275.

    CAS  Google Scholar 

  • Edman, K.A.P. and Kiessling, A. (1971) The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibers of the frog, Acta Physiol. Scand. 81, 182–196.

    PubMed  CAS  Google Scholar 

  • El-Saleh, S.C. and Solaro, R.J. (1987) Calmidazolium, a calmodulin antagonist, stimulates calciumtroponin C and calcium-calmodulin-dependent activation of striated muscle myofilaments, J. Biol. Chem. 262, 17240–17246.

    PubMed  CAS  Google Scholar 

  • Endo, M. (1972) Stretch-induced increase in activation of skinned muscle fibers by calcium, Nature 237, 211–213.

    CAS  Google Scholar 

  • Fabiato, A. and Fabiato, F. (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length, Nature 256, 54–56.

    PubMed  CAS  Google Scholar 

  • Fabiato, A. and Fabiato, F. (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells, J. Gen. Physiol. 72, 667–699.

    PubMed  CAS  Google Scholar 

  • Fedida, D. and Giles, W.R. (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle, J. Physiol. (Lond) 442, 191–209.

    CAS  Google Scholar 

  • Fentzke, R.C., Buck, S.H., Patel, J.R., Lin, H., Wolska, B.M., Stojanovic, M.O., Martin, A.F., Solaro, R.J., Moss, R.L., and Leiden, J.M. (1999) Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart, J. Physiol. (Lond.) 517, 143–157.

    CAS  Google Scholar 

  • Fitzsimons, D.P. and Moss, R.L. (1998) Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes, Circ. Res. 83, 602–607.

    PubMed  CAS  Google Scholar 

  • Frank, O. (1895) Zur Dynamik des Herzmuskels, Z. Biol. 32,370–447.

    Google Scholar 

  • Fuchs, F. (1977) The binding of calcium to glycerinated muscle fibers in rigor: the effect of filament overlap, Biochim. Biophys. Acta 491, 523–531.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. (1985) The binding of calcium to detergent-extracted rabbit psoas muscle fibres during relaxation and force generation, J. Muscle Res. Cell Motil. 6, 477–486.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. (1995) Mechanical modulation of the Ca2+ regulatory protein complex in cardiac muscle, News Physiol. Sci. 10, 6–12.

    CAS  Google Scholar 

  • Fuchs, F. and Fox, C. (1982) Parallel measurements of bound calcium and force in glycerinated rabbit psoas muscle fibers, Biochim. Biophys. Acta 679, 110–115.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. and Wang, Y.-P. (1991) Force, length, and Ca2+-troponin C affinity in skeletal muscle, Am. J. Physiol. 261, C787-C792.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. and Wang, Y.-P. (1996) Sarcomere length vs. interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding, J. Mol. Cell. Cardiol. 28, 1375–1383.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. and Wang, Y.-P. (1997) Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor, J. Mol. Cell. Cardiol. 29, 3267–3274.

    PubMed  CAS  Google Scholar 

  • Fujino, K., Sperelakis, N., and Solaro, R.J. (1988) Differental effects of d-and l-pimobendan on cardiac myofilament Ca2+ sensitivity, J. Pharmacol. Exp. Therap. 247, 519–523.

    CAS  Google Scholar 

  • Fukuda, N., Fujita, H., Fujita, T., and Ishiwata, S. (1998) Regulatory roles of MgADP and calcium in tension development of skinned cardiac muscle, J. Muscle Res. Cell Motil. 19, 909–921.

    PubMed  CAS  Google Scholar 

  • Fukuda, N., Kajiwara, H., Ishiwata, S., and Kurihara, S. (2000a) Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle, Circ.Res. 86, e1–e6.

    PubMed  CAS  Google Scholar 

  • Fukuda, N., Sasaki, D., Ishiwata, S., and Kurihara, S. (2000b) Understanding of sarcomere length (SL)-dependent tension generation in skinned cardiac muscle, Biophys. J. 78, 141 A.

    Google Scholar 

  • Gao, W.D., Backx, P.H., Azan-Backx, M., and Marban, E. (1994) Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle, Circ. Res. 74, 408–415.

    PubMed  CAS  Google Scholar 

  • Gao, W.D., Perez, N.G., and Marban, E. (1998) Calcium cycling and contractile activation in intact mouse cardiac muscle, J. Physiol. (Lond.) 507, 175–184.

    CAS  Google Scholar 

  • Godt, R.E. and Maughan, D.W. (1977) Swelling of skinned muscle fibers of the frog, Biophys. J 19, 103–116.

    PubMed  CAS  Google Scholar 

  • Godt, R.E. and Maughan, D.W. (1981) Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit, Pflugers Arch. 391, 334–337.

    PubMed  CAS  Google Scholar 

  • Gordon, A.M., Homsher, E., and Regnier M. (2000) Regulation of contraction in striated muscle, Physiol. Rev. 80, 853–924.

    PubMed  CAS  Google Scholar 

  • Gordon, A.M., Huxley, A.F., and Julian, F.J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. Physiol. (Lond.) 184, 170–192.

    CAS  Google Scholar 

  • Gulati, J., Sonnenblick, E., and Babu, A. (1991) The role of troponin C in the length dependence of Ca2+-sensitive force of mammalian skeletal and cardiac muscles, J. Physiol. (Lond.) 441, 305–324.

    CAS  Google Scholar 

  • Guth, K. and Potter, J.D. (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the regulatory sites in skinned rabbit psoas fibers, J. Biol. Chem. 262, 13627–13635.

    PubMed  CAS  Google Scholar 

  • Hancock, W.O., Martyn, D.A., and Huntsman, L.L. (1993) Ca2+ and segment length dependence of isometric force kinetics in intact ferret cardiac muscle, Circ. Res. 73, 603–611.

    PubMed  CAS  Google Scholar 

  • Hancock, W.O., Huntsman, L.L., and Gordon, A.M. (1997) Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics, J. Muscle Res. Cell Motil. 18, 671–681.

    PubMed  CAS  Google Scholar 

  • Harrison, S.M., Lamont, C., and Miller, D.J. (1988) Hysteresis and the length dependence of calcium sensitivity in chemically-skinned rat cardiac muscle, J. Physiol. (Lond.) 401, 115–143.

    CAS  Google Scholar 

  • Head, J.G., Ritchie, M.D., and Geeves, M.A. (1995) Characterization of the equilibrium between blocked and closed states of muscle thin filaments, Eur. J. Biochem. 227, 694–699.

    PubMed  CAS  Google Scholar 

  • Hibberd, M.G. and Jewell, B.R. (1982) Calcium and length-dependent force production in rat ventricular muscle, J. Physiol. (Lond.) 329, 527–540.

    CAS  Google Scholar 

  • Hoar, P.E., Mahoney, C.W., Kerrick, W.G.L., and Montague, D. (1987) MgADP increases maximum tension and Ca2+ sensitivity in skinned rabbit soleus fibers, Pflugers Arch. 410, 30–36.

    PubMed  CAS  Google Scholar 

  • Hofmann, P.A. and Fuchs, F. (1987a) Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C, Am. J. Physiol. 253, C90-C96.

    PubMed  CAS  Google Scholar 

  • Hofmann, P.A. and Fuchs, F. (1987b) Evidence for a force-dependent component of calcium binding to cardiac troponin C, Am. J. Physiol. 253, C541–0546.

    PubMed  CAS  Google Scholar 

  • Hofmann, P.A. and Fuchs, F. (1988) Bound calcium and force development in skinned cardiac muscle bundles: effect of sarcomere length, J. Mol. Cell. Cardiol. 20, 667–677.

    PubMed  CAS  Google Scholar 

  • Holroyde, M.J., Robertson, S.P., Johnson, J.D., Solaro, R. J., and Potter, J.D. (1980) The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J Biol. Chem. 255, 11688–11693.

    PubMed  CAS  Google Scholar 

  • Hongo, K., White, E., LeGuennec, J.-Y., and Orchard, C.H. (1996) Changes in [Ca2+]i, [Na+]i, and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length, J. Physiol. (Lond.) 491, 599–609.

    Google Scholar 

  • Huntsman, L.L. and Stewart, D.K. (1977) Length-dependent calcium inotropism in cat papillary muscle, Circ. Res. 40, 366–371.

    PubMed  CAS  Google Scholar 

  • Huxley, H.E. (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7, 281–308.

    PubMed  CAS  Google Scholar 

  • Huxley, H.E. and Hanson, J. (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature 173, 973–976.

    PubMed  CAS  Google Scholar 

  • Irving, T.C., Konhilas, J., Perry, D., Fischetti, R., and DeTombe, P.P. (2000) Myofilament lattice spacing as function of sarcomere length in isolated rat myocardium, Am. J. Physiol. 279, H2568–IHI2573.

    CAS  Google Scholar 

  • Ishikawa, T., Kajiwara, H., and Kurihara, S. (1999) Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium, Am. J. Physiol. 277, H2185-H2194.

    PubMed  CAS  Google Scholar 

  • Jewell, B.R. (1977) A reexamination of the influence of muscle length on myocardial performance, Circ. Res. 40, 221–230.

    PubMed  CAS  Google Scholar 

  • Julian, F.J., Sollins, M.R., and Moss, R.L. (1976) Absence of a plateau in length-tension relationship of rabbit papillary muscle when internal shortening is prevented, Nature 260, 340–342.

    PubMed  CAS  Google Scholar 

  • Kajiwara, H., Morimoto, S., Fukuda, N., Ohtsuki, I., and Kurihara, S. (2000) Effect of troponin I phosphorylation by protein kinase A on length-dependence of tension activation in skinned cardiac muscle fibers, Biochem. Biophys. Res. Comm. 272, 104–110.

    PubMed  CAS  Google Scholar 

  • Kaufmann, R.L., Bayer, R.M., and Harnasch, C. (1972) Autoregulation of contractility in the myocardial cell: displacement as a controlling parameter, Pflugers Arch. 332, 96–116.

    PubMed  CAS  Google Scholar 

  • Kawai, M., Wray, J.S., and Zhao, Y. (1993) The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. proportionality between the lattice spacing and the fiber width, Biophys. J 64, 187–196.

    PubMed  CAS  Google Scholar 

  • Kentish, J.C. and Stienen, G.J.M. (1994) Differential effects of length on maximum force production and myofibrillar ATPase activity in rat skinned cardiac muscle, J. Physiol. (Lond.) 475, 175–184.

    CAS  Google Scholar 

  • Kentish, J.C. and Wrzosek, A. (1998) Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae, J. Physiol. (Lond.) 506, 431–444.

    CAS  Google Scholar 

  • Kentish, J.C., ter Keurs, H.E.D.J., Ricciardi, L., Bucx, J.J.J., and Noble, M.I.M. (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle: Influence of calcium concentrations on these relations, Circ. Res. 58, 755–768.

    PubMed  CAS  Google Scholar 

  • Komukai K. and Kurihara, S. (1997) Length dependence of Ca2+-tension relationship in aequorin-injected ferret papillary muscles, Am.J. Physiol. 273, H 1068–H 1074.

    CAS  Google Scholar 

  • Konhilas, J.P., Wolska, B.M., Martin, A.F., Solaro, R.J., and deTombe, P.P. (2000) PKA modulates length-dependent activation in murine myocardium, Biophys. J. 78, 108A.

    Google Scholar 

  • Kraft, T. and Brenner, B. (1997) Force enhancement without changes in cross-bridge turnover kinetics: the effect of EMD 57033, Biophys. J. 72, 272–281.

    PubMed  CAS  Google Scholar 

  • Kuhn, H.J., Bletz, C., and Ruegg, J.C. (1990) Stretch-induced increase in the Ca2+ sensitivity of myofibrillar ATPase activity in skinned muscle fibres from pig ventricles, Pflugers Arch. 415, 741–746.

    PubMed  CAS  Google Scholar 

  • Kurihara, S. and Komukai, K. (1995) Tension-dependent changes of the intracellular Ca2+ transients in ferret ventricular muscles, J. Physiol. (Lond.) 489, 617–625.

    CAS  Google Scholar 

  • Labeit, S., Kolmerer, B., and Linke, W.A. (1997) The giant protein titin. Emerging roles in physiology and pathophysiology, Circ. Res. 80, 290–294.

    PubMed  CAS  Google Scholar 

  • Lakatta, E.G. (1991) Length modulation of muscle performance: Frank-Starling law of the heart, in Fozzard, H.A., Jennings, R.B., Haber, E., Katz, A.M., and Morgan H.E. (eds.) The Heart and Cardiovascular System, Vol. II, Raven Press, New York, pp. 1325–1351.

    Google Scholar 

  • Lakatta, E.G. and Jewell, B.R. (1977) Length-dependent activation. Its effect on the length-tension relation in cat ventricular muscle, Circ. Res. 40, 251–257.

    PubMed  CAS  Google Scholar 

  • Landesberg, A. and Sideman, S. (1994) Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells, Am. J. Physiol. 266, H 1260–1271.

    CAS  Google Scholar 

  • Lee, J.A. and Allen, D.G. (1997) Calcium sensitizers: mechanisms of action and potential usefulness as inotropes, Cardiovasc. Res. 36, 10–20.

    PubMed  CAS  Google Scholar 

  • Lehman, W., Hatch, V., Korman, K., Rosol, M., Thomas, L., Maytum, R., Geeves, M.A., van Eyk, J.E., Tobacman, L.S., and Craig, R. (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments, J Mol. Biol. 302, 593–606.

    PubMed  CAS  Google Scholar 

  • Lehrer, S.S. (1994) The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J. Muscle Res. Cell. Motil. 15, 232–236.

    PubMed  CAS  Google Scholar 

  • Lehrer, S.S. and Geeves, M.A. (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system, J. Mol. Biol. 277, 1081–1089.

    PubMed  CAS  Google Scholar 

  • Levine, R.J.C., Kensler, R.W., Yang, Z., Stull, J.T., and Sweeney, H.L. (1996) Myosin light chain phosphorylation affects the structure of rabit skeletal muscle thick filaments, Biophys. J. 71, 898–907.

    PubMed  CAS  Google Scholar 

  • Linke, W.A., Lvemeyer, M., Labeit, S., Hinssen, H., Ruegg, J.C., and Gautel, M. (1997) Actin-titin interaction in cardiac myofibils: probing a physiological role, Biophys. J. 73, 905–919.

    PubMed  CAS  Google Scholar 

  • Martyn, D.A. and Gordon, A.M. (1988) Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength, J. Muscle Res. Cell Motil. 9, 428–445.

    PubMed  CAS  Google Scholar 

  • Martyn, D.A., Freitag, C.J., Chase, P.B., and Gordon, A.M. (1999) Ca2+ and cross-bridge induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition, Biophys. J. 76, 1480–1493.

    PubMed  CAS  Google Scholar 

  • Martyn, D.A., Regnier, M., Xu, D., and Gordon, A.M. (2001) Ca2+ and crossbridge dependent changes in N- and C- terminal structure of troponin C in cardiac muscle, Biophys. J. 80, 360–370.

    PubMed  CAS  Google Scholar 

  • Matsubara, I. and Millman, B.M. (1974) X-ray diffraction patterns from mammalian heart muscle, J.Mol. Biol. 82, 527–536.

    PubMed  CAS  Google Scholar 

  • Matsubara, I., Suga, H., and Yagi, N. (1977) An X-ray diffraction study of the cross-circulated canine heart, J. Phys iol. (Lond.) 270, 311–320.

    CAS  Google Scholar 

  • Matsubara, I., Maughan, D.W., Saeki, Y., and Yagi, N. (1989) Cross-bridge movement in rat cardiac muscle as a function of calcium concentration, J. Physiol. (Lond.) 417, 555–565.

    CAS  Google Scholar 

  • McDonald, K.S. (2000) Ca2+ dependence of loaded shortening in rat skinned cardiac myocytes and skeletal muscle fibres, J. Physiol. (Lond.) 525, 169–181.

    CAS  Google Scholar 

  • McDonald, K.S. and Moss, R.L. (1995) Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length, Circ. Res. 77, 199–205.

    PubMed  CAS  Google Scholar 

  • McDonald, K.S., Wolff, M.R., and Moss, R.L. (1997) Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres, J. Physiol. (Lond.) 501, 607–621.

    CAS  Google Scholar 

  • McDonald, K.S., Field, L.J., Parmacek, M.S., Soonpaa, M., Leiden, J.M., and Moss, R.L. (1995) Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C, J. Physiol. (Lond.) 483, 131–139.

    CAS  Google Scholar 

  • McKillop, D.F.A. and Geeves, M.A. (1993) Regulation of the interaction between actin and myosin subfragment 1:evidence for three states of the thin filament, Biophys. J. 65, 693–701.

    PubMed  CAS  Google Scholar 

  • Metzger, J.M. (1995) Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers, Biophys. J. 68, 1430–1442.

    PubMed  CAS  Google Scholar 

  • Metzger, J.M., Wahr, P.A., Michele, D.E., Albayya, F., and Westfall, M.V. (1999) Effects of myosin heavy chain isoform switching on Ca2+-activated tension development in single adult cardiac myocytes, Circ. Res. 84, 1310–1317.

    PubMed  CAS  Google Scholar 

  • Millar, N.C. and Homsher, E. (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers: a steady state and transient kinetic study, J. Biol. Chem. 265, 20234–20240.

    PubMed  CAS  Google Scholar 

  • Millman, B.M. (1998) The filament lattice of striated muscle. Physiol. Rev. 78, 359–391.

    PubMed  CAS  Google Scholar 

  • Morano, I. (1999) Tuning the human heart molecular motors by myosin light chains, J. Mol. Med. 77, 544–555.

    PubMed  CAS  Google Scholar 

  • Moss, R.L. (1992) Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins, Circ. Res. 70, 865–884.

    PubMed  CAS  Google Scholar 

  • Moss, R.L., Nwoye, L.O., and Greaser, M.L. (1991) Substitution of cardiac troponin C into rabbit muscle does not alter the length dependence of Ca2+ sensitivity of tension. J. Physiol. (Lond.) 440, 273–289.

    CAS  Google Scholar 

  • Nassar, R., Malouf N.N., Kelly, M.B., Oakeley, A.E., and Anderson P.A. (1991) Force-pCa relation and troponin T isoforms of rabbit myocardium, Circ. Res. 69, 1470–1475.

    PubMed  CAS  Google Scholar 

  • Nichols, C.G., Hanck, D.A., and Jewell, B.R. (1988) The Anrep effect: an intrinsic myocardial mechanism, Can. J. Physiol. Pharmacol. 66, 924–929.

    PubMed  CAS  Google Scholar 

  • Page, S.G. and Huxley, H.E. (1963) Filament lengths in striated muscle, J. Cell Biol. 19, 369–390.

    PubMed  CAS  Google Scholar 

  • Palmer, S. and Kentish, J.C. (1998) Roles of Ca2+ and cross-bridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae, Circ. Res. 83, 179–186.

    PubMed  CAS  Google Scholar 

  • Palmiter, K.A., Kitada, Y., Muthuchamy, M., Wieczorek, D.F., and Solaro, R.J. (1996) Exchange of β-for a-tropomyosin in hearts of transgenic mice induces change in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation, J. Biol. Chem. 271, 11611–11614.

    PubMed  CAS  Google Scholar 

  • Palmiter, K.A., Tyska, M.J, Dupuis, D.E., Alpert, N.R., and Warshaw, D.M. (1999) Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms, J. Physiol. (Lond.) 519, 669–678.

    CAS  Google Scholar 

  • Parmley, W.W. and Chuck, L. (1973) Length-dependent changes in myocardial contractile state, Am. J. Physiol. 224, 1195–1199.

    PubMed  CAS  Google Scholar 

  • Patel, J.R., McDonald, K.S., Wolff, M.R., and Moss, R.L. (1997) Ca2+ binding to troponin C in skinned skeletal muscle fibers assessed with caged Ca2+ and a Ca2+ fluorophore: invariance of Ca2+ binding as a function of sarcomere length, J. Biol. Chem. 272, 6018–6027.

    PubMed  CAS  Google Scholar 

  • Patterson, S.W. and Starling, E.H. (1914) On the mechanical factors which determine the output of the ventricles, J. Physiol. (Lond.) 48, 357–379.

    CAS  Google Scholar 

  • Phan, B.C., Peyser, Y.M., Reisler, E., Muhlrad, A. (1997) Effect of complexes of ADP and phosphate analogs on the conformation of the Cys707-Cys697 region of myosin subfragment 1, Eur. J. Biochem. 243, 636–642.

    CAS  Google Scholar 

  • Powers, F.M. and Solaro, R.J. (1995) Caffeine alters myofilament activity and regulation independently of Ca2+ binding to troponin C, Am. J. Physiol. 268, C 1348–C 1353.

    CAS  Google Scholar 

  • Rassier, D.E., MacIntosh, B.R., and Herzog, W. (1999) Length dependence of active force production in skeletal muscle, J. Appl. Physiol. 86, 1445–1457.

    PubMed  CAS  Google Scholar 

  • Roszek, B., Baan, G.J., and Huijing, P.A. (1994) Decreasing stimulation frequency-dependent lengthforce characteristics of rat muscle, J. Appl. Physiol. 77, 2115–2124.

    PubMed  CAS  Google Scholar 

  • Rust, E.M., Albayya, F.P., and Metzger, J.M. (1999) Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J. Clin. Invest. 103, 1459–1467.

    PubMed  CAS  Google Scholar 

  • Saeki, Y., Kurihara, S., Hongo, K., and Tanaka, E. (1993) Alterations in intracellular calcium and tension of activated ferret papillary muscle in response to step length changes, J. Physiol. (Lond.) 463, 291–306.

    CAS  Google Scholar 

  • Sarnoff, S.J., Mitchell, J.P., Gilmore, J.P., and Remensnyder, J.P. (1960) Homeometric autoregulation in the heart, Circ. Res. 8, 1077–1091.

    PubMed  CAS  Google Scholar 

  • Schachat, F.H., Diamond, M.S., and Brandt, P.W. (1987) Effect of different troponin t-tropomyosin combinations on thin filament activation, J. Mol. Biol. 198, 551–554.

    PubMed  CAS  Google Scholar 

  • Silver, P.J., Buja, L.M., and Stull, J.T. (1986) Frequency-dependent myosin light chain phosphorylation in isolated myocardium, J Mol. Cell. Cardiol. 18, 31–37.

    PubMed  CAS  Google Scholar 

  • Smith, S.H. and Fuchs, F. (1999) Effect of ionic strength on length-dependent Ca2+ activation in skinned cardiac muscle, J. Mol. Cell. Cardiol. 31, 2115–2125.

    PubMed  CAS  Google Scholar 

  • Smith, S.H. and Fuchs, F. (2000) Length-dependence of cross-bridge mediated activation of the cardiac thin filament, J. Mol. Cell. Cardiol. 32, 831–838.

    PubMed  CAS  Google Scholar 

  • Solaro, R.J. and Rarick, H.M. (1998) Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments, Circ. Res. 83, 471–480.

    PubMed  CAS  Google Scholar 

  • Solaro, R.J. and Van Eyk, J. (1996) Altered interactions among thin filament proteins modulate cardiac function, J. Mol. Cell. Biol. 28, 217–230.

    CAS  Google Scholar 

  • Solaro, R.J., Gambassi, G., Warshaw, D.M., Keller, M.R., Spurgeon, H.A., Beier, N., and Lakatta, E.G. (1993) Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments, Circ.Res. 73, 981–990.

    PubMed  CAS  Google Scholar 

  • Sollot, S.J., Ziman, B.D., Warshaw, D.M., Spurgeon, H.A., and Lakatta, E.G. (1996) Actomyosin interaction modulates resting length of unstimulated cardiac venticular cells, Am. J. Physiol. 271, H896–H905.

    Google Scholar 

  • Stienen, G.J.M., Blange, T., and Treijtel, B.W. (1985) Tension development and calcium sensitivity in skinned muscle fibers of the frog, Pflugers Arch. 405, 19–23.

    PubMed  CAS  Google Scholar 

  • Stennett, R., Ogino, K., Morgan, J.P., and Burkhoff, D. (1996) Length-dependent activation in intact ferret hearts: study of steady-state Ca2+-stress-strain interrelations, Am. J. Physiol. 270, H 1940–H 1950.

    CAS  Google Scholar 

  • Stephenson, D.G. and Wendt, I.R. (1984) Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres, J. Muscle Res. Cell Motil. 5, 243–272.

    PubMed  CAS  Google Scholar 

  • Stephenson, D.G., Stewart, A.W., and Wilson, G.J. (1989) Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere lengths in rat and toad skeletal muscle, J. Physiol. (Lond.) 410, 351–366.

    CAS  Google Scholar 

  • Swartz, D.R., Moss, R.L., and Greaser, M.L. (1996) Calcium alone does not fully activate the thin filament for S1 binding to rigor myofibrils, Biophys. J. 71, 1891–1904.

    PubMed  CAS  Google Scholar 

  • Sweeney, H.L., Bowman, B., and Stull, J.T. (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function, Am. J. Physiol. 264, 1085–1095.

    Google Scholar 

  • Sweeney, H.L., Feng, H.S., Yang, Z., and Watkins, H. (1998) Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function, Proc.Nat. Acad. Sci. USA 95, 14406–14410.

    PubMed  CAS  Google Scholar 

  • ter Keurs, H.E.D.J. (1996) Heart failure and Starling’s law of the heart, Can. J. Cardiol. 12, 1047–1057.

    PubMed  Google Scholar 

  • ter Keurs, H.E.D.J. and Noble, M.I.M., eds. (1988) Starling’s Law of the Heart Revisited, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • ter Keurs, H.E.D.J., Rijnsburger, W.H., van Heuningen, R., and Nagelsmit, M.J. (1980) Tension development and sarcomere length in rat cardiac trabeculae: evidence of length-dependent activation, Circ. Re.s. 46, 703–714.

    Google Scholar 

  • Tobacman, L.S. (1996) Thin filament-mediated regulation of cardiac contraction, Ann. Rev. Physiol. 58, 447–481.

    CAS  Google Scholar 

  • Tobacman, L.S. and Lee, R. (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms, J. Biol. Chem. 262, 4059–4064.

    PubMed  CAS  Google Scholar 

  • Tobacman, L.S., Lin D., Butters, C., Landis, C., Back, N., Pavlov, D., and Homsher, E. (1999) Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy, J. Biol. Chem. 274, 28363–28370.

    PubMed  CAS  Google Scholar 

  • Tucci, P.J.F., Bregagnollo, E.A., Spadaro, J., Cicogna, A.C., and Ribeiro, M.C.L. (1984) Length dependence of activation studied in the isovolumic blood perfused dog heart, Circ. Res. 55, 59–66.

    PubMed  CAS  Google Scholar 

  • Van Buren, P., Harris, D.E., Alpert, N.R., and Warshaw, D.M. (1995) Cardiac VI and V3 myosins differ in their hydrolytic and mechanical activities in vitro, Circ. Res. 77, 439–444.

    Google Scholar 

  • Vandenboom, R., Claflin, D.R., and Julian, F.J. (1998) Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres, J. Physiol. (Lond.) 511, 171–180.

    CAS  Google Scholar 

  • van der Velden, J., de Jong, J.W., Owen, V.J., Burton, P.B.J., and Stienen, G.J.M. (2000) Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes, Cardiovasc. Res. 46, 487–495.

    PubMed  Google Scholar 

  • Vannier, C., Chevassus, H., and Vassort, G. (1996) Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats, Cardiovasc. Res. 32, 580–586.

    PubMed  CAS  Google Scholar 

  • Vibert, P., Craig, R., and Lehman, W. (1997) Steric-model for activation of muscle thin filaments, J. Mol. Biol. 266, 8–14.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-P. and Fuchs, F. (1994) Length, force, and Ca2+-troponin C affinity in cardiac and slow skeletal muscle, Am. J. Physiol. 266, C 1077–C 1082.

    CAS  Google Scholar 

  • Wang, Y.-P. and Fuchs, F. (1995) Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity, and Ca2+ binding, J Mol. Cell. Cardiol. 27, 1235–1244.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-P. and Fuchs, F. (2000a) Length-dependent effects of osmotic compression on skinned rabbit psoas muscle fibers, J Muscle Res. Cell Motil. 21, 313–319.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-P. and Fuchs, F. (2000b) Correlations among lattice spacing, Ca sensitivity, and Ca-troponin C affinity in skinned cardiac muscle, Biophys. J 78, 230A.

    Google Scholar 

  • Wannenberg, T., Heijne, G.H., Geerdink, J.H., Van Den Pool, H.W., Janssen, P.M.L., and De Tombe, P.P. (2000) Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation, Am. J. Physiol. 279, H779–H790.

    Google Scholar 

  • Wattanapermpool, J., Reiser, P.J., and Solaro, R.J. (1995) Troponin I isoforms and differential effects of acidic pH on soleus and cardiac myofilaments, Am. J. Physiol. 268, C323–C330.

    PubMed  CAS  Google Scholar 

  • Weisberg, A. and Winegrad, S. (1998) Relation between crossbridge structure and actomyosin ATPase activity in rat heart, Circ. Res. 83, 60–72.

    PubMed  CAS  Google Scholar 

  • Wendt, I.R. and Stephenson, D.G. (1983) Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat, Pflugers Arch. 398, 210–216.

    PubMed  CAS  Google Scholar 

  • Westfall, M.V., Albayya, F.P., Turner, I.I., and Metzger, J.M. (2000) Chimera analysis of troponin domains that influence Ca2+-activated myofilament tension in adult cardiac myocytes, Circ. Res. 86, 470–477.

    PubMed  CAS  Google Scholar 

  • Winegrad, S. (1999) Cardiac myosin binding protein C, Circ. Res. 83, 1117–1126.

    Google Scholar 

  • Wolff, M.R., McDonald, K.S., and Moss, R.L. (1995) Rate of tension development in cardiac muscle varies with level of activator calcium, Circ. Res. 76, 154–160.

    PubMed  CAS  Google Scholar 

  • Wolska, B.M., Kitada, Y., Palmiter, K.A., Westfall, M.V., Johnson, M.D., and Solaro, R.J. (1996) CGP-48506 increases contractility of ventricular myocytes and myofilaments by effects on actin-myosin reaction, Am. J. Physiol. 270, H24–H32.

    PubMed  CAS  Google Scholar 

  • Wolska, B., Keller, R.S., Evans, C.E., Palmiter, K.A., Phillips, R.M., Muthuchamy, M., Oehlenschlager, J., Wieczorek, D.F., de Tombe, P.P., and Solaro, R.J. (1999) Correlation between myofilament response to Ca2+ and altered dynamics of contraction and relaxation in transgenic cardiac cells that express β-tropomyosin, Circ. Res. 84, 745–751.

    PubMed  CAS  Google Scholar 

  • Wu, Y., Cazorla, O., Labeit, D., Labeit, S., and Granzier, H. (2000) Changes in titin and collgen underlie diastolic stiffness diversity of cardiac muscle, J. Mol. Cell. Cardiol. 32, 2151–2161.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Stull, J.T., Levine, R.J.C., and Sweeney, H.L. (1998) Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers, J. Struct. Biol. 122, 139–148.

    PubMed  CAS  Google Scholar 

  • Zhao, Y. and Kawai, M. (1993) The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. elementary steps affected by the spacing change, Biophys. J. 64, 197–210.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fuchs, F. (2002). The Frank -Starling Relationship: Cellular and Molecular Mechanisms. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics