Skip to main content

Part of the book series: Developments in Fullerene Science ((DFUL,volume 4))

Abstract

In the context of optimizing charge-separation processes in artificial model systems, meaningful incentives are lent from bacterial photosynthetic reaction centers [1]. Whereas in green or purple bacteria only one photosynthetic unit — PS II — is carrying out the light-to-chemical product conversion, green plants are using two systems — PS I and PS II [2]. Essential to all these systems is a relay of short-range energy/electron transfer reactions, evolving among chlorophyll- and quinone-moieties embedded in a transmembrane protein matrix. Ultimately the product of these cascades is transformation of light into usable chemical energy. The latter governs water cleavage to O2 and reduction of NADP to NADPH, which is used to produce in its final instant sugars from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Photosynthetic Reaction Center; Deisenhofer J. and Noms J.R. (Eds.), Academic Press, San Diego (1993).

    Google Scholar 

  2. Barber J. and Andersson B. (1994) Nature 370, 31.

    Article  CAS  Google Scholar 

  3. Carter F.L. (1987) Molecular Electronic Devices, Dekker, New York,

    Google Scholar 

  4. Photoinduced Electron Transfer (Eds., Fox M.A. and Chanon M.), Elsevier, Amsterdam (1988).

    Google Scholar 

  5. Electron Transfer in Chemistry (Ed., Balzani V.), Wiley-VCH, Weinheim (2001).

    Google Scholar 

  6. Newton M.D. (1991) Chem. Rev. 91, 767.

    Article  CAS  Google Scholar 

  7. Wasielewski M.R. (1992) Chem. Rev. 92, 435.

    Article  CAS  Google Scholar 

  8. Gust D., Moore T.A. and Moore A.L. (1993) Acc. Chem. Res. 26, 198.

    Article  CAS  Google Scholar 

  9. Paddon-Row M.N. (1994) Acc. Chem. Res. 27, 18.

    Article  CAS  Google Scholar 

  10. Gould I.R. and Farid S. (1996) Acc. Chem. Res. 29, 522.

    Article  CAS  Google Scholar 

  11. Balzani V., Juris A., Venturi M., Campagna S. and Serroni (1996) Chem. Rev. 96, 759.

    Article  CAS  Google Scholar 

  12. Willner I. (1997) Acc. Chem. Res. 30, 347.

    Article  CAS  Google Scholar 

  13. Piotrowiak P. (1999) Chem. Soc. Rev. 28, 143.

    Article  CAS  Google Scholar 

  14. Kurreck H. and Huber M. (1995) Angew. Chem. Int. Ed. Engl. 34, 849.

    Article  CAS  Google Scholar 

  15. Closs G.L., Miller J.R. (1988) Science 240, 440.

    Article  CAS  Google Scholar 

  16. Leading examples of noncovalent donor acceptor assemblies Tecilla P., Dixon R.P., Slobodkin G., Alavi D.S., Waldeck D.H. and Hamilton A.D. (1990) J. Am. Chem. Soc. 112, 9408.

    Article  CAS  Google Scholar 

  17. de Rege P.J.F., Williams S.A. and Therien M.J. (1995) Science 269, 1409.

    Article  Google Scholar 

  18. Kirby J.P., Roberts J.A., Nocera, D.G. (1997) J. Am. Chem. Soc., 119, 9230.

    Article  CAS  Google Scholar 

  19. Springs, S.L., Gosztola, D., Wasielewski M.R., Kral V., Andrievsky A. and Sessler J.L. (1999) J. Am. Chem. Soc. 121, 2281.

    Article  CAS  Google Scholar 

  20. Yamada K., Imahori I., Yoshizawa E., Gosztola D., Wasielewski M.R. and Sakata Y. (1999) Chem. Lett., 235.

    Google Scholar 

  21. Blanco M.-J., Jimenez M.C., Chambron J.-C., Heitz V., Linke M. and Sauvage J.-P. (1999) Chem. Soc. Rev. 28, 293.

    Article  CAS  Google Scholar 

  22. Sessler J.L., Wang B., Springs S.L. and Brown C.T. (1996) In Comprehensive Supramolecular Chemistry (Ed., Murakami Y.), Pergamon Press Ltd., Oxford, UK, Vol. 4, p. 311.

    Google Scholar 

  23. Marcus R.A. and Sutin N. (1985) Biochim. Biophys. Acta 811, 265.

    Article  CAS  Google Scholar 

  24. Marcus R.A. (1993) Angew. Chem. Int. Ed. Engl. 32, 1111.

    Article  Google Scholar 

  25. Kato T. and Tachiya M. (1995) Chem. Phys. Lett. 241, 463.

    Article  CAS  Google Scholar 

  26. Oevering H., Paddon-Row M.N., Heppener M., Oliver A.M., Cotsaris E., Verhoeven J.W. and Hush N.S. (1987) J. Am. Chem. Soc. 109, 3258.

    Article  CAS  Google Scholar 

  27. Haddon R.C.: (1988) Acc. Chem. Res. 21, 243.

    Article  CAS  Google Scholar 

  28. Haddon R.C. (1993) Science 261, 1545.

    Article  CAS  Google Scholar 

  29. Echegoyen L. and Echegoyen L.E. (1998) Acc. Chem. Res. 31, 593.

    Article  CAS  Google Scholar 

  30. Duskesas G. and Larsson S. (1997) Theor. Chem. Acc. 97, 110.

    Article  CAS  Google Scholar 

  31. Guldi D.M. and Asmus K.-D. (1997) J. Phys. Chem. A 101, 1472.

    Article  CAS  Google Scholar 

  32. Guldi D.M. and Prato M. (2000) Acc. Chem. Res. 33, 695.

    Article  CAS  Google Scholar 

  33. McGlashen M.L., Blackwood M.E. and Spior T.G. (1993) J. Am. Chem. Soc. 115, 2074.

    Article  CAS  Google Scholar 

  34. Haddon R.C., Hebard A.F., Rosseinsky M.J., Murphy D.W., Duclos S.J., Lyons K.B., Miller B., Rosamilia J.M., Fleming R.M., Kortan A.R., Glarum S.H., Makhija A.V., Muller A.J., Eick R.H., Zahurak S.M., Tycko R., Dabbagh G. and Thiel F.A. (1991) Nature 350, 320.

    Article  CAS  Google Scholar 

  35. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F. and Smalley R.E. (1985) Nature 318, 162.

    Article  CAS  Google Scholar 

  36. Gould I.R. and Farid S.: (1988) J. Am. Chem. Soc. 110, 7883.

    Article  CAS  Google Scholar 

  37. Gould I.R. and Farid S. (1996) Acc. Chem. Res. 29, 522.

    Article  CAS  Google Scholar 

  38. Mataga N. and Miyasaka H. (1999) In Electron Transfer from Isolated Molecules to Biomolecules Part 2; (Eds. Jortner J. and Bixon M.), Wiley, New York, p. 431.

    Google Scholar 

  39. Mataga N., Konda Y., Asahi T., Miyasaka H., Okada T. and Kakitani T. (1988) Chem. Phys. 127, 239.

    Article  CAS  Google Scholar 

  40. Arbogast J.W., Foote C.S. and Kao M. (1992) J. Am. Chem. Soc. 114, 2277.

    Article  CAS  Google Scholar 

  41. Osaki T., Tai Y.T., Tazawa M., Tanemura S., Inukai K., Ishiguro K., Sawaki Y., Saito Y., Shinohara H. and Nagashima H. (1993) Chem. Lett., 789.

    Google Scholar 

  42. Watanabe A. and Ito O. (1994) J. Phys. Chem. 98, 7736.

    Article  CAS  Google Scholar 

  43. Mikami K., Matsumoto S., Ishida A., Takamuku S., Suenobu T. and Fukuzumi S. (1995) J. Am. Chem. Soc. 117, 11134.

    Article  CAS  Google Scholar 

  44. Luo C., Fujitsuka M. and Ito O. (1998) J. Phys. Chem. A 102, 8717.

    Google Scholar 

  45. Fukuzumi S., Suenobu T., Patz M., Hirasaka T., Itoh S., Fujitsuka M. and Ito O. (1998) J. Am. Chem. Soc. 120, 8060.

    Article  CAS  Google Scholar 

  46. Mikami K., Matsumoto S., Okubo Y., Fujitsuka M., Ito O., Suenobu T. and Fukuzumi S. (2000) J. Am. Chem. Soc. 122, 2236.

    Article  CAS  Google Scholar 

  47. Fujitsuka M., Luo C., Ito O., Murata Y. and Komatsu K. (1999) J. Phys. Chem. A 103, 7155.

    Article  CAS  Google Scholar 

  48. Komamine S., Fujitsuka M. and Ito O. (1999) Phys. Chem. Chem. Phys. 1, 4745.

    Article  CAS  Google Scholar 

  49. Luo C., Fujitsuka M., Huang C.-H. and Ito O. (1999) Phys. Chem. Chem. Phys. 1, 2923.

    Article  CAS  Google Scholar 

  50. Rehm A. and Weiler A.: (1969) Ber. Bunsenges Phys. Chem. 73, 834.

    CAS  Google Scholar 

  51. Rehm A. and Weiler A. (1970) Isr. J. Chem. 8, 259.

    CAS  Google Scholar 

  52. Marcus R.A. (1968) J. Phys. Chem. 72, 891.

    Article  CAS  Google Scholar 

  53. Agmon N. and Levine R.D. (1977) Chem. Phys. Lett. 52, 197.

    Article  CAS  Google Scholar 

  54. Levine R.D. (1979) J. Phys. Chem. 83, 159.

    Article  CAS  Google Scholar 

  55. Fukuzumi S., Wong C. L. and Kochi J.K. (1980) J. Am. Chem. Soc. 102, 2928.

    Article  CAS  Google Scholar 

  56. Scandola F. and Balzani V. (1979) J. Am. Chem. Soc. 101, 6140.

    Article  CAS  Google Scholar 

  57. Fukuzumi S., Nakanishi I., Suenobu T. and Kadish K.M. (1999) J. Am. Chem. Soc. 121, 3468.

    Article  CAS  Google Scholar 

  58. Zhang J. and Unwin P.R. (2001) J. Chem. Soc. Perkin Trans. 2, 1608.

    Google Scholar 

  59. Guldi D.M. and Asmus K.-D. (1997) J. Am. Chem. Soc. 119, 5744.

    Article  CAS  Google Scholar 

  60. Fukuzumi S., Ohkubo K., Suenobu T., Kato K., Fujitsuka M. and Ito O. (2001) J. Am. Chem. Soc. 123, 8459.

    Article  CAS  Google Scholar 

  61. Guldi D.M., Neta P. and Asmus K.-D. (1994) J. Phys. Chem. 98, 4617.

    Article  CAS  Google Scholar 

  62. Hopfield J.J. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 36.

    Google Scholar 

  63. Van Duyne R.P. and Fischer S.F. (1974) Chem. Phys. 5, 183.

    Article  Google Scholar 

  64. Ulstrup J. and Jortner, J. (1975) J. Chem. Phys. 63, 4358.

    Article  CAS  Google Scholar 

  65. Siders P. and Marcus R.A. (1981) J. Am. Chem. Soc. 103, 741.

    Article  CAS  Google Scholar 

  66. Marcus R.A. (1984) J. Chem. Phys. 81, 4494.

    Article  CAS  Google Scholar 

  67. Dietel E., Hirsch A., Eichborn E., Rieker A., Hackbarth S. and Röder B. (1998) Chem. Commun., 1981.

    Google Scholar 

  68. Guldi D.M., Luo C., Prato M., Troisi A., Zerbetto F., Scheloske M., Dietel E., Bauer W. and Hirsch A. (2001) J. Am. Chem. Soc. 123, 9166.

    Article  CAS  Google Scholar 

  69. Guldi D.M., Luo C., Prato M., Troisi A., Zerbetto F., Scheloske M., Dietel E., Bauer W. and Hirsch A., submitted.

    Google Scholar 

  70. Imahori H., Tkachenko N.V., Vehmanen V., Tamaki K., Lemmetynen H., Sakata Y. and Fukuzumi S. (2001) J. Phys. Chem. A 105, 1750.

    Article  CAS  Google Scholar 

  71. Vehmanen V., Tkachenko N.V., Imahori H., Fukuzumi S. and Lemmetyinen H. (2001) Spectrochimica Acta, Part A 57, 2229.

    Article  CAS  Google Scholar 

  72. Tkachenko N.V., Guenther C., Imahori H., Tamaki K., Sakata Y., Fukuzumi S. and Lemmetyinen H. (2000) Chem. Phys. Lett. 326, 344.

    Article  CAS  Google Scholar 

  73. Larsson S., Klimkans A., Rodriguez-Monge, L. and Duskesas G. (1998) J. Mol. Struct. 425, 155.

    Article  CAS  Google Scholar 

  74. Guldi D.M. and Torres T., unpublished results.

    Google Scholar 

  75. Wang Y. and Cheng L.-T. (1992) J. Phys. Chem. 96, 1530.

    Article  CAS  Google Scholar 

  76. Wang Y.J. (1992) J. Phys. Chem. 96, 764.

    Article  CAS  Google Scholar 

  77. Seshadri R., Rao C.N.R., Pal H., Mukherjee T. and Mittal J.P. (1993) Chem. Phys. Lett. 204, 395.

    Article  Google Scholar 

  78. Caspar J.V. and Wang, Y. (1994) Chem. Phys. Lett. 218, 221.

    Article  CAS  Google Scholar 

  79. Williams R.M., Zwier J.M. and Verhoeven J.W. (1995) J. Am. Chem. Soc. 117, 4093.

    Article  CAS  Google Scholar 

  80. Imahori H. and Sakata Y. (1997) Adv. Mater. 9, 537.

    Article  CAS  Google Scholar 

  81. Prato M. (1997) J. Mater. Chem. 7, 1097.

    Article  CAS  Google Scholar 

  82. Martín N., Sánchez L., Illescas B. and Pérez I. (1998) Chem. Rev. 98, 2527.

    Article  Google Scholar 

  83. Diederich F. and Gomez-Lopez M. (1999) Chem. Soc. Rev. 28, 263.

    Article  CAS  Google Scholar 

  84. Imahori H. and Sakata Y. (1999) Eur. J. Org. Chem., 2445.

    Google Scholar 

  85. Guldi D.M. (2000) Chem Commun., 321.

    Google Scholar 

  86. Gust D., Moore T.A. and Moore A.L. (2001) Acc. Chem. Res. 34, 40.

    Article  CAS  Google Scholar 

  87. Leading examples: Imahori H., Hagiwara K., Aoki M., Akiyama T., Taniguchi S., Okada T., Shirakawa M. and Sakata Y. (1996) J. Am. Chem. Soc. 118, 11771.

    Article  CAS  Google Scholar 

  88. Fukuzumi S., Ohkubo K., Imahori H., Shao J., Ou Z., Zheng G., Chen Y., Pandey R.K., Fujitsuka M., Ito O. and Kadish K.M. (2001) J. Am. Chem. Soc. 123, 10676.

    Article  CAS  Google Scholar 

  89. Leading examples: Liddell P.A., Kuciauskas D., Sumida J.P., Nash B., Nguyen D., Moore A.L., Moore T.A. and Gust D. (1997) J. Am. Chem. Soc. 119, 1400.

    Article  CAS  Google Scholar 

  90. Kuciauskas D., Liddell P.A., Lin S., Johnson T.E., Weghorn S.J., Lindsey J.S., Moore A.L., Moore T.A. and Gust D. (1999) J. Am. Chem. Soc. 121, 8604.

    Article  CAS  Google Scholar 

  91. Leading examples: Armaroli N., Diederlich F., Dietrich-Buchecker CO., Flamigni L., Marconi G., Nierengarten J.-F. and Sauvage J.-P. (1998) Chem. Eur. J. 4, 406.

    Article  CAS  Google Scholar 

  92. Nierengarten J.-F., Schall C. and Nicoud J.-F. (1998) Angew. Chem. Int. Ed. 37, 1934.

    Article  CAS  Google Scholar 

  93. Leading examples: Baran P.S., Monaco R.R., Khan A.U., Schuster D.I. and Wilson S.R. (1997) J. Am. Chem. Soc. 119, 8363.

    Article  CAS  Google Scholar 

  94. Schuster D.I., Cheng P., Wilson S.R., Prokhorenko V., Katterle M., Holzwarth A.R., Braslavsky S.E., Klihm G., Williams R.M. and Luo C. (1999) J. Am. Chem. Soc. 121, 11599

    Article  CAS  Google Scholar 

  95. Leading examples: Tkachenko N.V., Rantala L., Tauber A.Y., Helaja J., Hynninen P.H. and Lemmetyinen H. (1999) J. Am. Chem. Soc. 121, 9378.

    Article  CAS  Google Scholar 

  96. Tkachenko N.V., Vuorimaa E., Kesti T., Alekseev A.S., Tauber A.Y., Hynninen P.H. and Lemmetyinen H. (2000) J. Phys. Chem. B 104, 6371.

    Article  CAS  Google Scholar 

  97. Leading examples: Shephard M.J. and Paddon-Row M.N. (1996) Aust. J. Chem. 49, 395.

    Article  CAS  Google Scholar 

  98. Bell T.D.M., Smith T.A., Ghiggino K.P., Ranasinghe M.G., Shephard M.J. and Paddon-Row M.N. (1997) Chem. Phys. Lett. 268, 223.

    Article  CAS  Google Scholar 

  99. Leading examples: Montforts F.-P. and Kutzki O. (2000) Angew. Chem. Int. Ed. 39, 599.

    Article  CAS  Google Scholar 

  100. Leading examples: D’Souza F., Deviprasad G.R., Rahman M.S. and Choi J.-P. (1999) Inorg. Chem. 38, 2157.

    Article  Google Scholar 

  101. D’Souza F., Deviprasad G.R., El-Khouly M.E., Fujitsuka M. and Ito O. (2001) J. Am. Chem. Soc. 123, 5277.

    Article  CAS  Google Scholar 

  102. Harrison R.J., Pearce B., Beddard G.S., Cowan J.A., Sanders J.K.M. (1987) Chem. Phys. 116, 429.

    Article  CAS  Google Scholar 

  103. Asahi T., Ohkohchi M., Matsusaka R., Mataga N., Zhang R.P., Osuka A. and Maruyama K. (1993) J. Am. Chem. Soc. 115, 5665.

    Article  CAS  Google Scholar 

  104. Harriman A., Heitz V. and Sauvage J.-P. (1993) J. Phys. Chem. 97, 5940.

    Article  CAS  Google Scholar 

  105. Khundkar L.R., Perry J.W., Hanson J.E. and Dervan P.B. (1994) J. Am. Chem. Soc. 116, 9700.

    Article  CAS  Google Scholar 

  106. Heitele H., Pöllinger F., Häberle T., Michel-Beyerie M.E. and Staab H.A. (1994) J. Phys. Chem. 98, 7402.

    Article  CAS  Google Scholar 

  107. Macpherson A.N., Liddell P.A., Lin S., Noss L., Seely G.R., DeGraziano J.M., Moore A.L., Moore T.A. and Gust D. (1995) J. Am. Chem. Soc. 117, 7202.

    Article  CAS  Google Scholar 

  108. Häberle T., Hirsch J., Pöllinger F., Heitele H., Michel-Beyerle M.E., Ander C., Döhling A., Krieger C., Rückemann A. and Staab H.A. (1996) J. Phys. Chem. 110, 18269.

    Article  Google Scholar 

  109. Noyes R.M. (1962) J. Am. Chem. Soc. 84, 513.

    Article  CAS  Google Scholar 

  110. Coetzee J.F. and Campion J.J. (1967) J. Am. Chem. Soc. 89, 2513.

    Article  CAS  Google Scholar 

  111. Fukuzumi S. and Kochi J.K. (1982) J. Am. Chem. Soc. 104, 7599.

    Article  CAS  Google Scholar 

  112. Guldi D.M., Luo C., Prato M. Dietel E. and Hirsch, A. (2000) Chem. Commun., 373.

    Google Scholar 

  113. Drovetskaya T., Reed C.A. and Boyd P.D.W. (1995) Tetrahedron Lett. 36, 7971.

    Article  CAS  Google Scholar 

  114. Kuciauskas D., Lin S., Seely G.R., Moore A.L., Moore T.A., Gust D., Drovetskaya T., Reed C.A. and Boyd P.D.W. (1996) J. Phys. Chem. 100, 15926.

    Article  CAS  Google Scholar 

  115. Imahori H., Hagiwara K., Akiyama T., Aoki M., Taniguchi S., Okada T., Shirakawa M. and Sakata Y. (1996) Chem. Phys. Lett. 263, 545.

    Article  CAS  Google Scholar 

  116. Imahori H., El-Khouly M.E., Fujitsuka M., Ito O., Sakata Y. and Fukuzumi S. (2001) J. Phys. Chem. A 105, 325.

    Article  CAS  Google Scholar 

  117. Luo C., Guldi D.M., Imahori H., Tamaki K. and Sakata Y. (2000) J. Am. Chem. Soc. 122, 6535.

    Article  CAS  Google Scholar 

  118. Imahori H., Tamaki K., Guldi D.M., Luo C., Fujitsuka M., Ito O., Sakata Y. and Fukuzumi S. (2001) J. Am. Chem. Soc. 123, 2607.

    Article  CAS  Google Scholar 

  119. Imahori H., Guldi D.M., Tamaki K., Yoshida Y., Luo C., Sakata, Y. and Fukuzumi S. (2001) J. Am. Chem. Soc. 123, 6617.

    Article  CAS  Google Scholar 

  120. Segura J.L., Gomez R., Martin N., Luo C., Swartz A. and Guldi D.M. (2001) Chen. Commun., 707.

    Google Scholar 

  121. Diekers M., Luo C., Guldi D.M. and Hirsch A. (2002) Chem. Eur. J. 8.

    Google Scholar 

  122. Williams R.M., Koeberg M., Lawson J.M., An Y.-Z., Rubin Y., Paddon-Row M.N. and Verhoeven J.W. (1996) J. Org. Chem. 61, 5055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guldi, D.M., Fukuzumi, S. (2002). The Small Reorganization Energy of Fullerenes. In: Guldi, D.M., Martin, N. (eds) Fullerenes: From Synthesis to Optoelectronic Properties. Developments in Fullerene Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9902-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9902-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6160-7

  • Online ISBN: 978-94-015-9902-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics