Skip to main content

Biosynthesis of aldehydes and organic acids

  • Chapter
Trace Gas Exchange in Forest Ecosystems

Part of the book series: Tree Physiology ((TREE,volume 3))

  • 236 Accesses

Abstract

Trees emit a wide range of VOCs including oxygenated species such as aldehydes and organic acids into the atmosphere. Depending on their reactivity the calculated lifetimes of these compounds in the troposphere vary in the range from only a few (e.g. formaldehyde 3.6 h) up to some hours (e.g. acetaldehyde 20 h) which is in the same range as isoprene (c. 8 h) or monoterpenes (0.5 to 7 h) (Kotzias et al. 1997). Photochemical destruction and oxidation of aldehydes and organic acids lead to the generation of free radicals which participate in numerous atmospheric reactions and control many atmospheric chemical processes (Kotzias et al. 1997). These reactions strongly affect HOx-radical chemistry in the troposphere thereby leading to the production of H02-radicals. In the presence of NO and NO2 in ambient air, these reactions cause a net generation of ozone. Moreover, the destruction of acetaldehyde, for example, may be connected to the production of peroxyacylnitrates (PANs) which are known for their adverse effects on human health and plant growth (Sakaki 1998; Kotzias et al. 1997). Formic and acetic acids in the atmosphere strongly participate in the acidification of rainwater. Especially in rural regions the contribution of these acids to rainwater acidity is significant and amounts to around 50 to 64 % (see Galloway et al. 1982; Andreae et al. 1988; Bode et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altshuller AP (1993) Production of aldehydes as primary emissions and secondary atmospheric reaction of alkanes and alkenes during night and early morning hours. Atmos Environ 27: 21–31

    Article  Google Scholar 

  • Amory AM & Cresswell CF (1986) Role of formate in the photorespiratory metabolism of Themada triandra Forssk. J Plant Physiol 124: 247–255

    Article  CAS  Google Scholar 

  • Ander P, Eriksson MER & Eriksson KE (1985) Methanol production from lignin-related substances by Phanerochaete chrysosporium. Physiol Plant 65: 317–321

    Article  CAS  Google Scholar 

  • Andreae MO, Talbot RW, Andreae TW & Harriss RC (1988) Formic and acetic acid over the Central Amazon region, Brazil. 1. Dry Season. J Geophys Res 93: 1616–1624

    Google Scholar 

  • Arey J, Winer AM, Atkinson R, Aschmann SM, Long WD & Morrison CL (1991) The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos Environ 25A: 1063–1075

    Article  Google Scholar 

  • Arnts RR, Gay BW & Bufalini JJ (1981) Photochemical oxidant potential of the biogenic hydrocarbons. In: Bufakini JJ & Arnts RR (eds) Atmospheric biogenic hydrocarbons (Vol 2 ), pp 117–133. Ann Arbor Science Publishers Inc., Michigan, U.S.A.

    Google Scholar 

  • Atkinson R (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 24A: 1–41

    Google Scholar 

  • Beaulieu JC, Peiser G & Saltveit ME (1997) Acetaldehyde is a causal agent responsible for ethanol-induced ripening inhibition in tomato fruit. Plant Physiol 113: 431–439

    PubMed  CAS  Google Scholar 

  • Bode K, Helas G & Kesselmeier J (1997) Biogenic contribution to atmospheric organic acids. In: Helas G, Slanina J & Steinbrecher R (eds) Biogenic volatile organic compounds in the atmosphere, pp 157–170. SPB Academic Publishing, Amsterdam, The Netherlands

    Google Scholar 

  • Buttery RG, Ling LC & Wellso SG (1982) Oat leaf volatiles: possible insect attractants. J Agr Food Chem 30: 791–792

    Article  CAS  Google Scholar 

  • Buttery RG, Xu C & Ling LC (1985) Volatile components of wheat leaves (and stems): possible insect attractants. J Agr Food Chem 33: 115–117

    Article  Google Scholar 

  • Colas des Francs-Small C, Ambard-Bretteville F, Small ID & Remy R (1993) Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol 102: 1171–1177

    Google Scholar 

  • Cossins EA (1964) The utilization of carbon-1 compounds by plants. I. The metabolism of methanol-C14 and its role in amino acid biosynthesis. Can J Botany 42: 1793–1802

    CAS  Google Scholar 

  • Cossins EA (1987) Folate biochemistry and the metabolism of one-carbon units. In: Davies DD (ed) The Biochemistry of Plants, Vol 11, pp 317–353, Academic Press, San Diego, U.S.A.

    Google Scholar 

  • Crawford RMM & Finegan DM (1989) Removal of ethanol from lodgepole pine roots. Tree Physiol 5: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Devlin RM, Bhowmik PC & Karczmarczyk SJ (1994) Influence of methanol on plant growth. Plant Growth Regul 22: 102–108

    CAS  Google Scholar 

  • Fall R & Benson AA (1996) Leaf methanol: the simpliest natural product from plants. Trends Plant Sci 1: 296–301

    Google Scholar 

  • Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol Rev 87: 377–382

    Article  CAS  Google Scholar 

  • Fliegmann J & Sandermann H Jr. (1997) Maize glutathione-dependent formaldehyde dehydrogenase cDNA: a novel plant gene of detoxification. Plant Mol Biol 34: 843–854

    Article  PubMed  CAS  Google Scholar 

  • Gaffe J, Tieman DM & Handa AK (1994) Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues. Effects of expression of a pectin methylesterase antisense gene. Plant Physiol 105: 199–203

    Google Scholar 

  • Giese M, Bauer-Doranth U, Langebartels C & Sondermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104: 1301–1309

    PubMed  CAS  Google Scholar 

  • Granby K, Christensen CS & Lohse C (1997) Urban and semi-rural observations of carboxylic acids and carbonyls. Atmos Environ 31: 1403–1415

    Article  CAS  Google Scholar 

  • Groeneveld HW, Binnekamp A & Sekens D (1991) Cardenolide biosynthesis from acetate in Asclepias urassavica. Phytochemistry 30: 2577–2585

    Article  CAS  Google Scholar 

  • Halliwell B & Butt, VS (1974) Oxidative decarboxylation of glycollate and glyoxylate by leaf peroxisomes. Biochem J 138: 271–224

    Google Scholar 

  • Halliwell B & Gutteridge JMC (1989) Free radicals in biology and medicine. Second Edition. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Harriman RW, Tieman DM & Hanada AK (1991) Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, non-ripening, and never ripe tomato fruits. Plant Physiol 97: 80–87

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34: 1201–1218

    Article  CAS  Google Scholar 

  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Rémy R & Colas des Francs C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Isidorov VA, Zenkevich IG & Ioffe BV (1985) Volatile organic compounds in the atmosphere of forests. Atmos Environ 19: 1–8

    Article  CAS  Google Scholar 

  • Johnson BJ & Dawson GA (1993) A preliminary study of the carbon-isotopic content of ambient formic acid and two selected sources: automobile exhaust and formicine ants. J Atmos Chem 17: 123–140

    Article  CAS  Google Scholar 

  • Kimmerer TW (1987) Alcohol dehydrogenase and pyruvate decarboxylase activity in leaves and roots of Eastern cottonwood (Populus deltoides Bartr.) and soybean (Glycine max L.). Plant Physiol 84: 1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW & Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69: 840–847

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW & MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84: 1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW & Stringer MA (1988) Alcohol dehydrogenase and ethanol in the stems of trees. Plant Physiol 87: 693–697

    Article  PubMed  CAS  Google Scholar 

  • König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC & Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29: 861–874

    Article  Google Scholar 

  • Kotzias D, Kondiari C & Sparta C (1997) Carbonyl compounds of biogenic origin–emission and concentrations in the atmosphere. In: Helas G, Slanina J & Steinbrecher R (eds) Biogenic volatile compounds in the atmosphere, pp 317–353. SPB Academic Publishing, Amsterdam, The Netherlands

    Google Scholar 

  • Kreuzberg K (1984) Starch fermentation via formate producing pathway Chlamydomonas reinhardii, Chlorogonium elongatum, and Chlorella fusca. Physiol Plant 61: 87–94

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Scheerer U & Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by trees. J Exp Bot 50: 757–765

    CAS  Google Scholar 

  • Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, to Lintel-Hekkert S, Scheerer U, Hüglin C & Rennenberg H (2001) Acetaldehyde emission by the leaves of trees-correlation with physiological and environmental parameters. Physiol Plant 113: 41

    Article  CAS  Google Scholar 

  • Levy S & Staehelin LA (1992) Synthesis, assembly and function of plant cell wall macromolecules. Curr Opin Cell Biol 4: 856–862

    Article  PubMed  CAS  Google Scholar 

  • MacCann MC & Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The Cytoskeletal Basis of Plant Growth and Form. pp. 109–129. Academic Press, San Diego, U.S.A.

    Google Scholar 

  • MacDonald RC & Kimmerer TW (1991) Ethanol in the stems of trees. Physiol Plant 82: 582588

    Google Scholar 

  • MacDonald RC & Kimmerer, TW (1993) Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides Bartr). Plant Physiol 102: 173–179

    PubMed  CAS  Google Scholar 

  • Mudgett MB & Clarke S (1993) Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival. Purification, characterization and sequence analysis of the wheat germ enzyme. Biochemistry 32: 11100–11111

    Article  PubMed  CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL & Fall R (1995) Methanol emission from leaves. Plant Physiol 108: 1359–1368

    PubMed  CAS  Google Scholar 

  • Nonomura AM & Benson AA (1992) The path of carbon in photosynthesis: improved crop yields with methanol. P Natl Acad Sci USA 89: 9794–9798

    Article  CAS  Google Scholar 

  • Obendorf RL, Koch JL, Gorecki RJ, Amable RA & Aveni MT (1990) Methanol accumulation in maturing seeds. J Exp Bot 41: 489–495

    Article  CAS  Google Scholar 

  • Oliver DJ (1981) Formate oxidation and oxygen reduction by leaf mitochondria. Plant Physiol 68: 703–705

    Article  PubMed  CAS  Google Scholar 

  • Puxbaum H, Rosenberg C, Gregori M, Lanzerstorfer C, Ober E & Winiwarter W (1988) Atmospheric concentrations of formic and acetic acid and related compounds in eastern and northern Austria. Atmos Environ 22: 2841–2850

    Article  CAS  Google Scholar 

  • Ricard J & Noat G (1986) Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. I. A theory of the ionic control of a complex multi-enzyme system. Eur J Biochem 155: 199–202

    Article  PubMed  Google Scholar 

  • Riley JC & Thompson JE (1998) Ripening-induced acceleration of volatile aldehyde generation following tissue disruption in tomato fruit. Physiol Plant 104: 571–576

    Article  CAS  Google Scholar 

  • Rowe RN, Fan DJ & Richards BAJ (1994) Effects of foliar and root applications of methanol or ethanol on the growth of tomato plants (Lycopersicon esculentum Mill.) New Zeal J Crop Hort 22: 335–337

    CAS  Google Scholar 

  • Sanhueza E & Andreae MO (1991) Emission of formic and acetic acid from tropical savanna soils. Geophys Res Lett 18: 1707–1710

    Article  CAS  Google Scholar 

  • Suzuki K, Itai R, Suzuki K, Nakashiani H, Nishizawa N-K, Yoshimura E & Mori S (1998) Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol 116: 725–732

    Article  PubMed  CAS  Google Scholar 

  • Tadege M & Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Plant Mol Biol 35: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Talbot RW, Andreae MO, Berresheim H, Jacob DJ & Beecher KM (1990) Sources and sinks of formic, acetic and pyruvic acids over Central Amazonias. 2. Wet season. J Geophys Res 95: 16799–16811

    Google Scholar 

  • Wingler A, Lea PJ & Leegood RC (1999) Photorespiratory metabolsim of glyoxylate and formate in glycine-accumulating mutants of barley and Amaranthus edulis. Planta 207: 518–526

    Article  CAS  Google Scholar 

  • Wippermann U, Fliegmann J, Bauw G, Langebartels C, Maier K & Sandermann H Jr. (1999) Maize glutathione-dependent formaldehyde dehydrogenase: protein sequence and caralytic properties. Planta 208: 12–18

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman H, Harren FJM, Reuss J & Parker DH (1997) Dynamics of acetaldehyde production during anoxia and post-anoxia in Red Bell Pepper studied by photoacoustic techniques. Plant Physiol 113: 925–932

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kreuzwieser, J. (2002). Biosynthesis of aldehydes and organic acids. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics