Skip to main content

Production and consumption of NH +4 and NH3 in trees

  • Chapter
Trace Gas Exchange in Forest Ecosystems

Part of the book series: Tree Physiology ((TREE,volume 3))

Abstract

Of all the nutrients acquired from the soil for plant growth, nitrogen (N) is generally required in the greatest amount. The availability of N is dependent on the global N cycle, which relies on the formation of combined inorganic N from atmospheric N2, as very little N is made available to soils from weathering of substratum (Sprent 1987). Climate and soil organisms interact with soil building processes in such a way that the N cycle is very dynamic and has an important impact on habitat development and plant succession. Plants form a critical part of the dynamics of the N cycle in that they act as a large store for N, but also release much of their N back to the global cycle as tissues senesce and decay. However, as plant succession progresses to climax, more N is locked up in relatively larger and longer-lived species and N becomes a growth-limiting nutrient in most habitats. In such a situation, the N economy of a plant is likely to be under strong selection pressure. In the case of trees, they are faced with balancing acquisition of new or primary N, against retention and recycling of secondary N from old/storage tissue to new growth. Thus in senescing deciduous trees the maximum re-absorption of N for recycling is about 70%, with a slightly smaller value for evergreen species (Aerts 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84: 597–608

    Article  Google Scholar 

  • Baker A & Parsons R (1997) Rapid assimilation of recently fixed N2 in root nodules of Myrica gale. Physiol Plantarum 99: 640–647

    Article  CAS  Google Scholar 

  • Beardmore T, Wetzel S, Burgess D & Charest PJ (1996) Characterization of seed storage proteins in Populus and their homology with Populus vegetative storage proteins. Tree Physiol 16: 833–840

    Article  PubMed  CAS  Google Scholar 

  • Bedell J-P, Chalot M, Brun A & Botton B (1995) Purification and properties of glutamine synthetase from Douglas fir roots. Physiol Plantarum 94: 597–604

    Article  CAS  Google Scholar 

  • Biagioni M, Nah C, Heimler D & Lorenzini G (1997) PAL activity and differential ozone sensitivity in tobacco, bean and poplar. J Phytopathol 145: 533–539

    Article  CAS  Google Scholar 

  • Butland SL, Chow ML & Ellis BE (1998) A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Mol Biol 37: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Carvalho H, Pereira S, Sunkel C & Salema R (1992) Detection of a cytosolic glutamine synthetase in leaves of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol 100: 1591–1594

    Article  PubMed  CAS  Google Scholar 

  • Clough ECM (1993) Ecological aspects of nitrate utilization in woody plants. PhD thesis, University College London

    Google Scholar 

  • Clough ECM, Pearson J & Stewart GR (1989) Nitrate utilisation and nitrogen status in English woodland communities. Ann Sci Forest 46: 669–672

    Article  Google Scholar 

  • Edwards J, Walker E & Coruzzi G (1990) Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Nat Acad of Sci USA 87: 3459–3463

    Article  CAS  Google Scholar 

  • Elmlinger MW & Mohr H (1992) Glutamine-synthetase in scots pine-seedlings and its control by blue-light and light absorbed by phytochrome. Planta 188: 396–402

    Article  CAS  Google Scholar 

  • Espin G, Moreno S & Guzman J (1994) Molecular-genetics of the glutamine synthetases in rhizobium species. Crit Rev Microbiol 20: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Forde BG & Clarkson DT (1999) Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Adv Bot Res 30: 1–90

    Article  CAS  Google Scholar 

  • Fox G, Ratcliffe R, Robinson S & Stewart GR (1995) Evidence for deamination by glutamate dehydrogenase in higher plants: commentary. Can J Bot 73: 1112–1115

    Article  CAS  Google Scholar 

  • Fredeen AL & Field CB (1992) Ammonium and nitrate uptake in gap, generalist and understory species of the genus Piper. Oecologia 92: 207–214

    Article  Google Scholar 

  • Frioni L, Dodera R, Malates D & Irigoyen I (1998) An assessment of nitrogen fixation capability of leguminous trees in Uruguay. App Soil Ecol 7: 271–279

    Article  Google Scholar 

  • Gessler A, Schneider S, von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K & Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138: 275–285

    Article  CAS  Google Scholar 

  • Givan CV (1979) Metabolic detoxification of ammonia in tissues of higher plants. Phytochem 18: 375–382

    Article  CAS  Google Scholar 

  • Guan CG, Ribeiro A, Akkermans ADL, Jing YX, vanKammen A, Bisseling T & Pawloski K (1996) Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: Expression of glutamine synthetase and acetylornithine transaminase. Plant Mol Biol 32: 1177–1184

    Google Scholar 

  • Harrison AF, Schulze E-D, Gebauer G & Bruckner G (2000) Canopy uptake and utilization of atmospheric pollutant nitrogen In: Schulze E-D (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems, pp 171–188. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Hausler RE, Bailey KJ, Lea PJ & Leegood RC (1996) Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. 3. Aspects of glyoxylate metabolism and effects of glyoxylate on the activation state of ribulose-1,5bisphosphate carboxylase-oxygenase. Planta 200: 388–396

    Article  Google Scholar 

  • Ireland RJ & Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine and aspartate metabolism. In: Singh BK (ed) Plant Amino Acids, pp 49–109. Marcel Dekker Inc & New York, U.S.A.

    Google Scholar 

  • Joy K (1988) Ammonia, glutamine and asparagine: A carbon-nitrogen interface. Can J Bot 66: 2103–2109

    CAS  Google Scholar 

  • Kawakami N & Watanabe A (1988) Senescence-specific increase in cytosolic glutamine synthetase and its mRNA in radish cotyledons. Plant Physiol 88: 1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY & Glass ADM (1996) Kinetics of NH4+ influx in spruce. Plant Physiol 110: 773–779

    PubMed  CAS  Google Scholar 

  • Lambers H, Chapin F & Pons T (1998) Plant Physiological Ecology. Springer, New York, U.S.A.

    Google Scholar 

  • Lea PJ, Blackwell R, Chen F-L & Hecht U (1990) Enzymes of ammonia assimilation. In: Lea Pi (ed) Enzymes of Primary Metabolism, pp 257–276. Academic Press, London, U.K.

    Chapter  Google Scholar 

  • Lea RI & Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant Amino Acids, pp 1–47. Marcel Dekker Inc & New York, U.S.A.

    Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD & Hausler RE (1995) The regulation and control of photorespiration. J Exp Bot 46: 1397–1414

    Article  CAS  Google Scholar 

  • Magel E & Hubner B (1997) Distribution of phenylalanine ammonia lyase and chalcone synthase within trunks of Robinia pseudoacacia L.. Bot Acta 110: 314–322

    CAS  Google Scholar 

  • Margolis H, Vézina L & Ouimet R (1988) Relation of light and nitrogen source to growth, nitrate reductase and glutamine synthetase activity of jack pine seedlings. Physiol Plant 72: 790–795

    Article  CAS  Google Scholar 

  • Min X, Siddiqi MY, Guy RD, Glass ADM & Kronzucker HJ (1998) Induction of nitrate uptake and nitrate reductase activity in trembling aspen and lodgepole pine. Plant Cell Environ 21: 1039–1046

    Article  CAS  Google Scholar 

  • Min X, Siddiqi MY, Guy RD, Glass ADM & Kronzucker HJ (2000) A comparative kinetic analysis of nitrate and ammonium influx in two early-successional tree species of temperate and boreal forest ecosystems. Plant Cell Environ 23: 321–328

    Article  CAS  Google Scholar 

  • Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M & Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392: 914–916

    Article  CAS  Google Scholar 

  • Oaks A (1995) Evidence for deamination by glutamate dehydrogenase in higher plants: reply. Can J Bot 73: 1116–1117

    Article  CAS  Google Scholar 

  • Olsson MO & Falkengren-Grerup U (2000) Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak woodland understorey. Ann Bot 85: 299–305

    Article  CAS  Google Scholar 

  • Osmond B, Badger M, Maxwell K, Bjorkman O & Leegood R (1997) Too many photons: Photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2: 119–121

    Google Scholar 

  • Pearson J, Clough ECM & Kershaw JL (1989) Comparative-study of nitrogen assimilation in woodland species. Ann Sci Forest 46: 663–665

    Article  Google Scholar 

  • Pearson J, Clough ECM, Woodall J, Havill DC & Zhang XH (1998) Ammonia emissions to the atmosphere from leaves of wild plants and Hordeum vulgare treated with methionine sulphoximine. New Phytol 138: 37–48

    Article  CAS  Google Scholar 

  • Pearson J & Ji YM (1994) Seasonal-variation of leaf glutamine-synthetase isoforms in temperate deciduous trees strongly suggests different functions for the enzymes. Plant Cell Environ 17: 1331–1337

    Article  CAS  Google Scholar 

  • Pearson J & Soares A (1995) A hypothesis of plant susceptibility to atmospheric pollution based on intrinsic nitrogen metabolism: Why acidity really is the problem. Water Air Soil Poll 85: 1227–1232

    Google Scholar 

  • Pearson J & Soares A (1998) Physiological responses of plant leaves to atmospheric ammonia and ammonium. Atmos Environ 32: 533–538

    Article  Google Scholar 

  • Pearson J & Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125: 283–305

    Article  CAS  Google Scholar 

  • Raven J, Wollenweber B & Handley L (1992a) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol 121: 19–32

    Article  CAS  Google Scholar 

  • Raven J, Wollenweber B & Handley L (1992b) Ammonia and ammonium fluxes between photolithotrophs and the environment in relation to the global nitrogen cycle. New Phytol 121: 5–18

    Article  CAS  Google Scholar 

  • Reglinski T, Stavely FJL & Taylor JT (1998) Induction of phenylalanine ammonia lyase activity and control of Sphaeropsis sapinea infection in Pinus radiata by 5-chlorosalicylic acid. Eur J Forest Pathol 28: 153–158

    Article  Google Scholar 

  • Rennenberg H, Kreutzer K, Papen H & Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol 139: 71–86

    Article  CAS  Google Scholar 

  • Robinson SA, Stewart GR & Phillips R (1992) Regulation of glutamate-dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell-suspension cultures. Plant Physiol 98: 1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Roderick ML, Berry SL, Saunders AR & Noble IR (1999) On the relationship between the composition, morphology and function of leaves. Funct Ecol 13: 696–710

    Article  Google Scholar 

  • Schjoerring JK, Husted S & Mattsson M (1998) Physiological parameters controlling plant-atmosphere ammonia exchange. Atmos Environ 32: 491–498

    Article  CAS  Google Scholar 

  • Schlee D, Tintemann H, Thöringer C, Jung K & Förstel H (1994) Aktivitäten und Eigenschaften von Glutaminsynthetase und Glutamatdehydrogenase aus Nadeln von Pinus sylvestris in Abhängigkeit vom Standort. Angewandte Botanik 68: 89–94

    CAS  Google Scholar 

  • Schmidt S & Stewart GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ 20: 1231–1241

    Article  Google Scholar 

  • Schmidt S & Stewart GR (1999) Glycine metabolism by plant roots and its occurrence in Australian plant communities. Aust J Plant Physiol 26: 253–264

    Article  CAS  Google Scholar 

  • Schmidt S, Stewart GR, Tumbull MH, Erskine PD & Ashwath N (1998) Nitrogen relations of natural and disturbed plant communities in tropical Australia. Oecologia 117: 95–104

    Article  Google Scholar 

  • Seith B, Setzer B, Flaig H & Mohr H (1994) Appearance of nitrate reductase, nitrite reductase and glutamine synthetase in different organs of the Scots pine (Pinus sylvestris) seedling as affected by light, nitrate and ammonium. Physiol Plant 91: 419–426

    Article  CAS  Google Scholar 

  • Singh S, Lewis NG & Towers GHN (1998) Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers. J Plant Physiol 153: 316–323

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Todd P & Stewart GR (1984) The occurrence of nitrate reduction in the leaves of woody-plants. Ann Bot 54: 363–374

    CAS  Google Scholar 

  • Soares A, Ming JY & Pearson J (1995) Physiological indicators and susceptibility of plants to acidifying atmospheric-pollution–a multivariate approach. Environ Poll 87: 159–166

    Article  CAS  Google Scholar 

  • Sprent JI (1987) The Ecology of the Nitrogen Cycle. Cambridge, Cambridge University Press, UK.

    Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant-tissue. Annu Rev Plant Phys 45: 303–322

    Article  CAS  Google Scholar 

  • Stewart GR, Gracia CA, Hegarty EE & Specht RL (1990) Nitrate reductase-activity and chlorophyll content in sun leaves of subtropical australian closed-forest ( Rain-forest) And open-forest communities. Oecologia 82: 544–551

    Google Scholar 

  • Stewart GR, Hegarty EE & Specht RL (1988) Inorganic nitrogen assimilation in plants of Australian rainforest communities. Physiol Plant 74: 26–33

    Article  CAS  Google Scholar 

  • Stewart GR, Joly CA & Smirnoff N (1992) Partitioning of inorganic nitrogen assimilation between the roots and shoots of cerrado and forest trees of contrasting plant-communities of south east Brazil. Oecologia 91: 511–517

    Article  Google Scholar 

  • Stewart GR, Pate JS & Unkovich M (1993) Characteristics of inorganic nitrogen assimilation of plants in fire-prone mediterranean-type vegetation. Plant Cell Environ 16: 351–363

    Article  CAS  Google Scholar 

  • Stewart GR, Pearson J, Kershaw JL & Clough ECM (1989) Biochemical aspects of inorganic nitrogen assimilation by woody-plants. Ann Sci Forest 46: 648–653

    Article  Google Scholar 

  • Thomas RB, Bashkin MA & Richter DD (2000) Nitrogen inhibition of nodulation and N2 fixation of a tropical N2 fixing tree (Gliricidia sepium) grown in elevated atmospheric CO2. New Phytol 145: 233–243

    Article  CAS  Google Scholar 

  • Truax B, Lambert F, Gagnon D & Chevrier N (1994) Nitrate reductase and glutamine synthetase activities in relation to growth and nitrogen assimilation in red oak and red ash seedlings; effects of N-forms, N concentration and light intensity. Trees 9: 12–18

    Google Scholar 

  • Van Hove LWA, Vankooten O, Adema EH, Vredenberg WJ & Pieters GA (1989) Physiological-effects of long-term exposure to low and moderate concentrations of atmospheric NH3 on poplar leaves. Plant Cell Environ 12: 899–908

    Article  Google Scholar 

  • Vézina L-P & Margolis H (1990) Purification and properties of glutamine synthetase in leaves and roots of Pinus banksiana Lamb. Plant Physiol 94: 657–664

    Article  PubMed  Google Scholar 

  • Wallenda T, Stober C, Högbom L, Schinkel H, George E, Högberg P & Read DJ (2000) Nitrogen uptake processes in roots and mycorrhizas. In: Schulze E-D (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems, pp 122–143. Springer Verlag, Berlin, Germany

    Chapter  Google Scholar 

  • Wallsgrove RM, Keys AJ, Lea PJ & Miflin BJ (1983) Photosynthesis, photo-respiration and nitrogen-metabolism. Plant Cell Environ 6: 301–309

    CAS  Google Scholar 

  • Woodall J, Boxall JG, Forde BG & Pearson J (1996a) Changing perspectives in plant nitrogen metabolism: the central role of glutamine synthetase. Science Progress 79: 1–26

    CAS  Google Scholar 

  • Woodall J & Forde BG (1996) Glutamine synthetase polypeptides in the roots of 55 legume species in relation to their climatic origin and the partitioning of nitrate assimilation. Plant Cell Environ 19: 848–858

    Article  CAS  Google Scholar 

  • Woodall J, Havill DC & Pearson J (1996b) Developmental changes in glutamine synthetase isoforms in Sambucus nigra and Trientalis europaea. Plant Physiol Biochem 34: 697–706

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pearson, J., Woodall, J., Elisabeth, C., Nielsen, K.H., Schjørring, J.K. (2002). Production and consumption of NH +4 and NH3 in trees. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics