Skip to main content

Ozone and volatile organic compounds: isoprene, terpenes, aldehydes, and organic acids

  • Chapter
Book cover Trace Gas Exchange in Forest Ecosystems

Part of the book series: Tree Physiology ((TREE,volume 3))

  • 248 Accesses

Abstract

Emissions of volatile organic compounds from plants in the presence of nitrogen oxides can result in plant damage through the production of ozone and other air pollutants. It has long been known that photochemical air pollution can damage vegetation (Middleton et al. 1950). The first laboratory experiments by Haagen-Smit et al. (1952) showed that photolyzed mixtures of nitrogen dioxide (NO2) and alkenes damage plants. Haagen-Smit and coworkers also showed that ozone was produced in these mixtures (HaagenSmit 1952; Haagen-Smit et al. 1953; Haagen-Smit and Fox 1956).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfossi D, Sandroni S & Viarengo S (1991) Tropospheric ozone in the nineteenth century: the Moncalieri series. J Geophys Res 96: 17349–17352

    Article  Google Scholar 

  • Arey J, Atkinson R & Aschmann SM (1990) Product study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOR. J Geophys Res 95: 1853918546

    Google Scholar 

  • Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes. J Phys Chem Ref Data 26: 215–290

    Article  CAS  Google Scholar 

  • Atkinson R (1994) Gas-phase tropospheric chemistry of organic compounds: a review. J Phys Chem Ref Data Monograph 2: 1–216

    CAS  Google Scholar 

  • Aumont B, Madronich S, Bey I & Tyndall GS (2000) Contribution of secondary VOC to the composition of aqueous atmospheric particles: a modeling approach. J Atmos Chem 35: 59–75

    Article  CAS  Google Scholar 

  • Baker B, Geunther A, Greenberg J, Goldstein A & Fall R (1999) Canopy fluxes of 2-methyl3-buten-2-ol over ponderosa pine forest by relaxed eddy accumulation: field data and model comparison. J Geophys Res 104: 26107–26114

    Article  CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage Assoc 44: 881–899

    CAS  Google Scholar 

  • Carter WPL & Atkinson R (1996) Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOR. Int J Chem Kinet 28: 497–530

    Article  CAS  Google Scholar 

  • Cardelino CA & Chameides WL (1995) An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J Air Waste Manage Assoc 45: 161–180

    Article  CAS  Google Scholar 

  • Chameides WL, Kindsay RW, Richardson J & Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241: 14731475

    Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, DiPalo V, Valentini R, Tirone G, Seufert G, Bertin N, Hansen U, Csiky O, Lenz R & Sharma M (1999) Emission of reactive compounds from orange orchards and their removal by within-canopy processes. J Geophys Res 104: 80778094

    Google Scholar 

  • Darmais S, Dutaur L, Larsen B, Cieslik S, Luchetta L, Simon V & Tones L (2000) Emission fluxes of VOC by orange trees determined by both relaxed eddy accumulation and vertical gradient approaches. Chemosphere Glob Change Sci 2: 47–56

    Article  CAS  Google Scholar 

  • Enders G, Teichmann U & Kramm G (1989) Profiles of ozone and surface-layer parameters over a mature spruce stand. In: Georgii H-W (ed) Mechanisms and Effects of Pollutant-Transfer into Forests, pp 21–35. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Enders G, Dlugi R, Steinbrecher R, Clement B, Daiber R, v. Eijk J, Gäb S, Haziza M, Helas G, Hermann U, Kessel M, Kesselmeier J, Kotzias D, Kourtidis K, Kurth H-H, McMillen RT, Roider G, Schürmann W, Teichmann U & Tores L (1992) Biosphere/atmosphere interactions: integrated research in a European coniferous forest ecosystem. Atmos Environ 26A: 171–189

    Google Scholar 

  • EPA (1991) National Air Quality and Emissions Trends Report, 1989. Research Triangle Park, North Carolina: U.S. Environmental Protection Agency

    Google Scholar 

  • Finlayson-Pitts BJ & Pitts JN (1999) Chemistry of the Upper and Lower Atmosphere, Theory, Experiments and Applications. Academic Press, New York, U.S.A.

    Google Scholar 

  • Fishman J, Solomon S & Crutzen PJ (1979) Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus 31: 432–446

    Article  CAS  Google Scholar 

  • Forkel R, Stockwell WR & Steinbrecher R (1999) Multilayer canopy/chemistry model to simulate the effect of in-canopy processes on the emission rates of biogenic VOCs. In: Borell PM & Borell P (eds) Proceedings of the EUROTRAC Symposium `98, Volume 2, pp 45–49. WITPRESS, Southampton, U.K.

    Google Scholar 

  • Fuentes JD & Dann TF (1994) Ground-level ozone in eastern Canada: seasonal variations, trends, and occurrences of high concentrations. J Air Waste Manage Assoc 44: 1019–1026

    CAS  Google Scholar 

  • Fuentes JD, Wang D, Neumann HH, Gillespie TJ, den Hartog G & Dann TF (1996) Ambient biogenic hydrocarbons and isoprene emissions from a mixed deciduous forest. J Atmos Chem 25: 67–95

    Article  CAS  Google Scholar 

  • Gao W, Weseley ML & Doskey PV (1993) Numerical modeling of the turbulent diffusion and chemistry of NOx, 03, Isoprene, and other reactive trace gases above a forest canopy. J Geophys Res 98: 18339–18353

    Article  CAS  Google Scholar 

  • Gietl G & Rall A (1986) Bulk deposition into the catchment “Grosse Ohe”. Results of neighbouring sites in the open and under spruce at different altitudes. In: Georgii H-W (ed) Atmospheric Pollutants in Forest Areas, pp 79–88. Reidel Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Grosjean D, Grosjean E & Williams II EL (1993a) The reaction of ozone with MPAN, CH2=C(CH3)C(0)OONO2. Environ Sci Technol 27: 2548–2552

    Article  CAS  Google Scholar 

  • Grosjean D, Williams II EL & Grosjean E (1993b) Atmospheric chemistry of isoprene and of its carbonyl products. Environ Sci Technol 27: 830–840

    Article  CAS  Google Scholar 

  • Grosjean D, Williams II EL & Grosjean E (1993c) Gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2=(CH3)C(0)00NO2. Int J Chem Kinet 25: 921–929

    Article  CAS  Google Scholar 

  • Gu C-L, Rynard CM, Hendry DG & Mill T (1985) Hydroxyl radical oxidation of isoprene. Environ Sci Technol 19: 151–155

    Article  CAS  Google Scholar 

  • Guenther AB, Zimmermann PR, Harley PC, Monson RK & Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis. J Geophys Res 98: 12609–12617

    Article  Google Scholar 

  • Guenther AB, Zimmermann PR & Wildermuth M (1994) Natural volatile organic compoundemission rate estimates for U.S. woodland landscapes. Atmos Environ 28: 1197–1210

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles smog. Indust Eng Chem 44: 1342–1346

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ, Bradley CE & Fox MM (1953) Ozone formation in photochemical oxidation of organic substances. Indust Eng Chem 45: 2086–2089

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ, Darley EF, Zaitlin M, Hull H & Nobel WM (1952) Investigation of injury to plants from air pollution in the Los Angeles area. Plant Physiol 27: 18–34

    Article  PubMed  CAS  Google Scholar 

  • Haagen-Smit AJ & Fox MM (1956) Ozone formation in photochemical oxidation of organic substances. Indust Eng Chem 48: 1484–1487

    Article  CAS  Google Scholar 

  • Hakola H, Arey J, Aschmann SM & Atkinson R (1994) Product formation from the gas-phase reactions of OH radicals and 03 with a series of monoterpenes. J Atmos Chem 18: 75–102

    Article  CAS  Google Scholar 

  • Harley RA & Cass GR (1995) Modeling the atmospheric concentrations of individual volatile organic compounds. Atmos Environ 29: 905–922

    Article  CAS  Google Scholar 

  • Hough AM & Derwent RG (1990) Changes in the global concentration of tropospheric ozone due to human activities. Nature 344: 645–648

    Article  CAS  Google Scholar 

  • Isaksen ISA & Hov 0 (1987) Calculation of trends in the tropospheric concentration of 03, OH, CO, CH4 and N20. Tellus 39B: 271–285

    Google Scholar 

  • Kim YP, Seinfeld JH & Saxena P (1993) Atmospheric gas-aerosol equilibrium I. thermodynamic model. Aerosol Sci Technol 19: 157–181

    Article  CAS  Google Scholar 

  • Koppmann R, Plass-Dülmer C, Ramacher B, Rudolph J, Kunz H, Melzer D & Speth P (1998) Measurements of carbon monoxide and nonmethane hydrocarbons during POPCORN, J Atmos Chem 31: 53–72

    Article  CAS  Google Scholar 

  • König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC & Rudolph J (1995) Relative contributions of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29: 861–874

    Article  Google Scholar 

  • Leone JA & Seinfeld JH (1985) Comparative analysis of chemical reaction mechanisms for photochemical smog. Atmos Environ 19: 437–464.

    Article  CAS  Google Scholar 

  • Lin X, Trainer M & Liu SC (1988) On the nonlinearity of the tropospheric ozone production. J Geophys Res 93: 15879–15888

    Article  Google Scholar 

  • Logan JA (1985) Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. J Geophys Res 90: 10463–10882

    Article  Google Scholar 

  • Makar PA, Fuentes JD, Wang D, Staebler RM % Wiebe HA (1999) Chemical processing of biogenic hydrocarbons within and above a temperate deciduous forest. J Geophys Res 104: 3581–3603

    Article  CAS  Google Scholar 

  • Marenco A, Gouget H, Nedelec P & Pages J-P (1994) Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: consequences: positive radiative forcing. J Geophys Res 99: 16617–16632

    Article  CAS  Google Scholar 

  • McKee DJ (ed) (1994) Tropospheric Ozone: Human Health and Agricultural Impacts. CRC Press, Boca Raton, Florida, U.S.A.

    Google Scholar 

  • Meyers TP & Paw UKT (1987) Modeling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41: 143–163

    Article  Google Scholar 

  • Middleton JT, Kendrick Jr. JB & Schwalm HW (1950) Injury to herbaceous plants by smog or air pollution. Plants Dis Rep 34: 245–252

    CAS  Google Scholar 

  • Milford JB, Russell AG & McRae GJ (1989) Spatial patterns in photochemical pollutant response to NOX and ROG reductions. Environ Sci Technol 23: 1290–1301

    Article  CAS  Google Scholar 

  • Paulson SE & Seinfeld JH (1992) Development and evaluation of a photochemical mechanism for isoprene. J Geophys Res 97: 20703–20715

    Article  Google Scholar 

  • Plass-Dülmer PD, Brauers T & Rudolph J (1998) POPCORN: A field study of photochemistry in northeastern Germany. J Atmos Chem 31: 5–31

    Article  Google Scholar 

  • Saxena P, Hildemann LM, McMurry PH & Seinfeld JH (1995) Organics alter hygroscopic behavior of atmospheric particles. J Geophys Res 95: 1837–1851.

    Google Scholar 

  • Saxena P & Hildemann LM (1996) Water-soluable in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24: 57–109

    Article  CAS  Google Scholar 

  • Sillman S (1995) The use of NON, H2O2, and HNO3 as indicators for ozone-NON-hydrocarbon sensitivity in urban indicators. J Geophys Res 100: 14175–14188

    Article  Google Scholar 

  • Skov H, Hjorth J, Jensen NR & Restelli G (1992) Products and mechanisms of the reactions of the nitrate radical (NO3) with isoprene, 1,3-butadien and 2,3-dimethyl-1,3-butadien in air. Atmos Environ 26A: 2771–2783

    Article  Google Scholar 

  • Staudt M, Bertin N, Frenzel B & Seufert G (2000) Variations in the amount and composition of monoterpenes emitted by young Pinus pinea trees — implications for emissions modeling. J Atmos Chem 35: 77–99

    Article  CAS  Google Scholar 

  • Steinbrecher R, Hauff K, Hakola H & Rössler J (1999) A revised parametrisation for emission modelling of isoprenoids for boreal plants. In: Laurila Th & Lindfors V (eds) Biogenic VOC Emission and Photochemistry in the Boreal Regions of Europe, pp 29–43. European Commission, Brussels, Belgium

    Google Scholar 

  • Steinbrecher R, Hauff K, Rabong R & Steinbrecher J (1997) The BEMA-project: isoprenoid emission of oak species typical for the Mediterranean area: source strength and controlling variables. Atmos Environ 31: 79–88

    Article  CAS  Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M & Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102: 25847–25879

    Article  CAS  Google Scholar 

  • Stockwell WR, Kramm G, Scheel H-E, Mohnen VA & Seiler W (1996) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann Jr. H, Wellburn AR & Heath RL (eds) Forest Decline and Ozone: A Comparison Of Controlled Chamber and Field Experiments, pp 1–38. Springer Verlag, New York, U.S.A.

    Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23: 1293–1304

    Article  CAS  Google Scholar 

  • Volz A & Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 332: 240–242

    Article  CAS  Google Scholar 

  • Walton S, Gallagher MW & Duyzer JH (1997) Use of a detailed model to study the exchange of NOx and 03 above and below a deciduous canopy. Atmos Environ 31: 2915–2931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stockwell, W.R., Forkel, R. (2002). Ozone and volatile organic compounds: isoprene, terpenes, aldehydes, and organic acids. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics