Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 3))

Abstract

Analysis of the impact of ozone (O3) on tree physiology and ecology requires the knowledge of O3 formation, transport and uptake by the foliage (i.e., adsorption onto external leaf/plant surfaces and absorption or flux through the stomata into the leaf mesophyll). Within the canopy the leaves are the primary sites of O3 deposition, with the stomata representing the interface for the O3 taken up from the atmosphere into the tree. Analysis of O3 uptake by plants is important because only O3 absorbed through the stomata into the leaf mesophyll will directly affect biochemical, physiological and growth processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amt der Tiroler Landesregierung (1985–1998) Zustand der Tiroler Wälder. Untersuchungen über den Waldzustand und die Immissionsbelastung. Berichte an den Tiroler Landtag 1985–1998, Innsbruck, Austria

    Google Scholar 

  • Borghetti M, Cinnirella S, Magani F and Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis. Trees 12: 187–195

    Google Scholar 

  • Chameides WL and Lodge JP (1992) Troposheric ozone. Formation and fate. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation, pp 5–30. Lewis, Chelsea, Mi., U.S.A.

    Google Scholar 

  • Coe H, Gallagher MW, Choularton TW and Dore C (1995) Canopy scale measurements of stomatal and cuticular 03 uptake by Sitka spruce. Atmos Environ 29: 1413–1423

    Article  CAS  Google Scholar 

  • Dang QL, Margolis HA, Coyea MR, Sy M and Collatz GJ (1997) Regulation of branch-levelgas exchange of boreal trees: roles of shoot water potential and vapour pressure difference. Tree Physiol 17: 521–535

    Article  PubMed  CAS  Google Scholar 

  • Damesin C and Rambal S (1995) Field study on leaf photosynthetic performance by a Mediterranean deciduous oak (Quercus pubescens) during severe summer drought. New Phytol 131: 159–167

    Article  Google Scholar 

  • Dobson MC, Taylor G and Freer-Smith PH (1990) The control of ozone uptake by Picea abies (L.) Karst. and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytol 116: 465–474

    Article  CAS  Google Scholar 

  • Duyzer J, Westrate H and Walton S (1995) Exchange of ozone and nitrogen oxides between the atmosphere and coniferous forest. Water Air Soil Pollut 85: 2065–2070

    Article  CAS  Google Scholar 

  • Enders G (1975) Deposition of ozone to a mature spruce forest.: measurements and comparison to models. Environ Pollut 75: 61–67

    Article  Google Scholar 

  • Enders G and Teichmann U (1986) GASDEP–Gaseous deposition measurements of SO2, NOx and 03 to a spruce stand: conception, instrumentation, and first results of an experimental project. In: Georgii HW (ed) Atmospheric pollutants in forest areas, pp 13–24. Reidel Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Epron D and Dryer E (1993) Long term effects of drought on photosynthesis of adult oak trees [Quercus petrea (Mat.) Liebl. and Quercus robur L.] in a natural stand. New Phytol 125: 381–389

    Article  Google Scholar 

  • Fontan J, Minga A, Lopez A and Druilhet A (1992) Vertical ozone profiles in a pine forest. Atmos Environ 26a: 863–869

    Article  Google Scholar 

  • Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE and Snyder KR (1995) Physiology, morphology, and ozone uptake of seedlings, saplings, and canopy black cherry trees. Environ Pollut 89: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen TS, Kolb TE, Skelly JM, Steiner KC, Joyce BJ and Savage JE (1996) Light environment alters ozone uptake per net photosynthetic rate in black cherry trees. Tree Physiol 16: 485–490

    Article  PubMed  CAS  Google Scholar 

  • Fuentes JD, Gillespie TJ, Hartog G and Neumann HH (1992) Ozone deposition onto a deciduous forest during dry and wet conditions. Agr Forest Meteorol 62: 1–18

    Article  Google Scholar 

  • Götz B (1996) Ozon and Trockenstreß. Wirkungen auf den Gaswechsel von Fichte. Libri Botanici 16. IHW-Verlag, München, 149 p

    Google Scholar 

  • Granz DA, Zhang XJ, Massman WJ, den Hartog G, Neumann HH and Pederson JR (1995) Effects of stomatal conductance and surface wetness on ozone deposition in field grown grape. Amos Environ 29: 3189–3198

    Article  Google Scholar 

  • Grünhage L and Jäger HJ (1994) Influence of the atmospheric conductivity on ozone exposure of plants under ambient conditions: considerations for establishing ozone standards to protect vegetation. Environ Pollut 85: 125–129

    Article  PubMed  Google Scholar 

  • Hasler R (1991) Vergleich der Gaswechselmessungen der drei Jahre (Juli 1986–Juni 1989). In: Stark M (ed) Luftschadstoffe and Wald. Lufthaushalt, Luftverschmutzung and Waldschäden in der Schweiz, Vol. 5, pp 177–184. Verlag der Fachvereine, Zürich, Switzerland

    Google Scholar 

  • Havranek WM and Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK and Hinckley TM (eds) Ecophysiology of coniferous forests, pp 95–124. Academic press, San Diego, U.S.A.

    Google Scholar 

  • Havranek WM and Wieser G (1989) Research design to measure ozone uptake and its effects on gas-exchange of spruce in the field. In: Payer HD, Pfirrmann T and Mathy P (eds) Environmental research with plants in closed chambers, pp 148–152. Air Pollution Research Report 26, Commission of the European Communities, Brussels, Belgium

    Google Scholar 

  • Havranek WM and Wieser G (1993) Zur Ozontoleranz der europäischen Lärche (Lanz decidua Mill.). Forstwiss Centralbl 112: 56–64

    Article  Google Scholar 

  • Havranek WM and Wieser G (1994) Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees. P Roy Soc Edinb B 102: 541–546

    Google Scholar 

  • Hinckley TM, Lassioe JP and Running SW (1978) Temporal and spatial variations in the water status of forest trees. Forest Sci, Monograph 20, 72 p

    Google Scholar 

  • Iacobelli A and McCaughery JH (1993) Stomatal conductance in a northern temperate deciduous forest: temporal and spatial patterns. Can J For Res 23: 245–252

    Article  Google Scholar 

  • Inclan R, Alonso R, Pujades M, Teres J and Gimeno BS (1998) Ozone and drought stress: interactive effects on gas exchange in Aleppo pine (Pinus halepensis Mill.) Chemosphere 36: 685–690

    CAS  Google Scholar 

  • Kerstiens G and Lendzian KJ (1989) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19

    Article  CAS  Google Scholar 

  • Koch W (1993) Langjähriger Reinluft/Standortsluftvergleich des Gaswechsels von Fichten unter Freilandbedingungen. - Ein Beitrag zur Waldschadensforschung. Forstliche Forschungsberichte München 130, 94 p.

    Google Scholar 

  • Koch W and Lautenschlager K (1988) Photosynthesis and transpiration in the upper crown of a mature spruce in purified and ambient atmosphere in a natural stand. Trees 2: 213–222

    Article  Google Scholar 

  • Kolb TE, Fredericksen TS, Steiner KC and Skelly JM (1997) Issues in scaling tree size and age response to ozone: a review. Environ Pollut 98: 195–208

    Article  CAS  Google Scholar 

  • Körner C, Scheel JA and Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13: 45–82

    Google Scholar 

  • Laisk A, Kull O and Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90: 1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Leverenz B, Deans JD, Ford ED, Jarvis PG, Milne R and Whitehead D (1982) Systematic spatial variation of stomatal conductance in a sitka spruce plantation. J Appl Ecol 19. 835851

    Google Scholar 

  • Manes F, Seufert G and Vitale M (1997) Ecophysiological studies of Mediterranean plant species at the Castelporziano estate. Atmos Environ 31: 51–60

    Article  CAS  Google Scholar 

  • Matyssek R, Havranek WM, Wieser G and Innes JL (1997) Ozone and the forests in Austria and Switzerland. In: Sandermann H, Wellburn AR and Heath RL (eds) Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies 137, pp 95–134. Springer Verlag, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Miller EK, Friedland AJ, Arons EA, Mohnen VA, Battles JJ, Panek JA, Kadlecek J and Johnson AH (1993) Atmospheric deposition to forests along an elevational gradient at Whiteface Mountain, NY, USA. Atmos Environ 27A: 2121–2136

    Article  Google Scholar 

  • Moldau H, Sober J and Sober A (1990) Differential sensitivity of stomata and mesophyll to sudden exposure of bean shoots to ozone. Photosynthetica 24: 446–458

    CAS  Google Scholar 

  • Munger JW, Wofsy SC, Bakwin PS, Fan S, Goulden ML, Daube BC, Goldstein AH, Moore K and Fitzjarrald D (1996) Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a sub-arctic woodland. 1. Measurements and mechanisms. J Geophys Res 101: 12639–12657

    Article  CAS  Google Scholar 

  • Nobel PS (1983) Biochemical plant physiology and ecology. Freeman and Co., New York 011inger SV, Aber JD and Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf-, canopy, and stand-level processes. Ecol Appl 7: 1237–1251

    Google Scholar 

  • Pleijel H, Kalsson GP, Danielsson H and Sellden G (1995) Surface wetness enhances ozone deposition to a pasture canopy. Atmos Environ 29: 3391–3393

    Article  CAS  Google Scholar 

  • Polie A, Wieser G and Havranek WM (1995) Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst) at high altitude. Plant Cell Environ 18: 681–688

    Article  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: A unifying theory. Tree Physiol 3: 6391

    Article  Google Scholar 

  • Reich PB and Hinckley TM (1989). Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on the maximum daily leaf diffusive conductance in two oak species. Funct Ecol 3: 719–726

    Article  Google Scholar 

  • Reich PB, Walters MB and Ellworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62: 365–393

    Article  Google Scholar 

  • Rennenberg H, Polie A and Reuther M (1997) Role of ozone in forest decline on Wank Mountain (Alps). In: Sandermann H, Wellburn AR and Heath RL (eds) Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies 137, pp 135–162. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Runeckles VC (1992) Uptake of ozone by vegetation. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation, pp 157–188. Lewis Publishers Inc., Chelsea, Mi., U.S.A.

    Google Scholar 

  • Samuelson LI and Kelly JM (1997) Ozone uptake in Prunus serotina, Acer rubrum and Quercus rubra forest trees of different size. New Phytol 136: 255–264

    Article  CAS  Google Scholar 

  • Skärby L Troeng E and Bostrom CA (1987) Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine. Forest Sci 33: 801–808

    Google Scholar 

  • Skelly JM, Fredricksen TS, Savage JE and Snyder KR (1996). Vertical gradients of ozone and carbon dioxide within a deciduous forest in central Pennsylvania. Environ Pollut 94: 235240

    Google Scholar 

  • Smith WK, Young DR, Catret GA, Hadley JL and McNaughton GM (1984) Autumn stomatal closure in six conifer species of the central Rocky Mountains. Oecologia 63: 237–242

    Article  Google Scholar 

  • Smidt S (1993) Die Ozonsituation in alpinen Tälern Österreichs. Centralbl Gesamte Forstwes 110: 205–220

    Google Scholar 

  • Squire GR and Black (1981) Stomatal behaviour in the field, In: Jarvis PG and Mansfield TA (eds) Stomatal physiology, pp 223–245. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Stockwell WR, Kramm G, Scheel H-E, Mohnen VA and Seiler W (1997) Ozone formation, destruction and exposure in Europe and in the United States. In: Sandermann H, Wellburn AR and Heath RL (eds) Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies 137, pp 1–38. Springer Verlag, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Tausz M, Batic F and Grill D (1996) Bioindication at forest sites–Concepts, practice and outlook. Phyton 36: 7–14

    Google Scholar 

  • Tausz M, Bytnerowicz A, Arbaugh MJ, Weidner W and Grill D (1999) Antioxidants and protective pigments of Pinus ponderosa needles at gradients of natural stresses and ozone in the San Bernadino Mountains in California. Free Radical Res 31: 113–120

    Article  Google Scholar 

  • Tausz M, Bytnerowicz A, Arbaugh MJ, Wonisch A and Grill D (2001) Biochemical response patterns in Pinus ponderosa trees at field plots in the San Bernadino Mountains (Southern California. Tree Physiol 21: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Ecological Studies 31, Springer, Berlin, Heidelberg, New York, Tokyo, 137 p

    Google Scholar 

  • Vecci R and Valli G (1999) Ozone assessment in the southern part of the Alps. Atmos Environ 33: 97–109

    Article  Google Scholar 

  • Vygodskaya NN, Milyuokova I, Varlagin A, Tatrinov F, Sogachev A, Kobak KI, Desyatkin R, Bauer G, Hollinger DY, Kelliher FM and Schulze E-D (1997) Leaf conductance and CO2 assimilation of Larix gmelinii growing in eastern Siberian boreal forest. Tree Physiol 17: 607–615

    Article  PubMed  Google Scholar 

  • Wang D, Hinckley TM, Cumming AB and Braatne J (1995) A comparison of measured and models ozone uptake into plant leaves. Environ Pollut 89: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Wieser G (1999) Evaluation of the impact of ozone on conifers in the Alps: a case study on spruce, pine and larch in the Austrian Alps. Phyton 39: 241–252

    CAS  Google Scholar 

  • Wieser G and Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7: 227–232

    Article  Google Scholar 

  • Wieser G and Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Wieser G and Havranek WM (1996) Evaluation of ozone impact on mature spruce and larch in the field. J Plant Physiol 148: 189–194

    Article  CAS  Google Scholar 

  • Wieser G and Kronfuß G (1997) The influence of vapour pressure deficit and mild soil water stress on the gas exchange of Norway spruce (Picea abies (L.) Karst). seedlings. Centralbl Gesamte Forstwes 114: 173–182

    Google Scholar 

  • Wieser G, Häsler R, Götz B, Koch W, and Havranek WM (1999) Seasonal ozone uptake of mature evergreen conifers at different altitudes. Phyton 39: 233–240

    CAS  Google Scholar 

  • Wieser G, Häsler R, Götz B, Koch W and Havranek WM (2000) Role of cimate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abiea and Pinus cembra: a synthesis. Environ Pollut 109: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Winner WE (1994) Mechanistic analysis of plant response to air pollution. Ecol. Appl 4: 651–661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wieser, G. (2002). Ozone. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics