Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 40))

Abstract

The large size of the native N pool in soils, compared to fertilizer N inputs, and the inherent variability of native soil N, make assessments of the fate of fertiliser N virtually impossible to assess without the use of a tracer to differentiate the fertiliser input from background soil N. The low natural abundance of the stable isotope, 15N, together with the relatively low cost of 15N-enriched N compounds makes this isotope an ideal tracer for soil N transformations. Consequently, 15N-enriched substrates have been widely used in studies following the fate of N in soil-plant systems. However, the use of 15N to study N processes in the field necessitates large resources of labour and time, and access to a mass spectrometer. Attendant costs of 15N analyses also need to be considered before embarking on a program of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aita, C. (1996). Couplage des cycles du carbone et de l’azote dans les sols cultivĂ©s: Etude, au champ, des processus de dĂ©composition après apport de matière organique fraĂ®che. Ph.D thesis, UniversitĂ© Paris VI, p 209.

    Google Scholar 

  • Aita, C., Recous, S., and Angers, D. (1997). Short term kinetics of residual wheat straw C and N under field conditions: characterisation by 15N13C tracing and soil particle size fractionation. European Journal of Soil Science 48, 283–294.

    Article  Google Scholar 

  • Amato, M., Ladd, J. N., Ellington, A., Ford, G., Mahoney, J.E., Taylor, A. C., and Walsgott, D. (1987). Decomposition of plant material in Australian soils. IV Decomposition in situ of i4C- and 15N-labelled legume and wheat materials in a range of Southern Australian soils. Australian Journal of Soil Research, 25, 95–105.

    Article  CAS  Google Scholar 

  • Barraclough, D. (1991). The use of mean pool abundances to interpret 15N tracer experiments. I. Theory. Plant and Soil 131, 89–96.

    CAS  Google Scholar 

  • Barraclough, D. and Puri, G. (1995). The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biology and Biochemistry 27, 17–22.

    Article  CAS  Google Scholar 

  • Barrie, A. and Workman, C. T. (1984). An automated analytical system for nutritional investigations using 15N tracers. Spectroscopy International Journal 3, 439–447.

    CAS  Google Scholar 

  • Bjarnason, S. (1988). Calculation of gross nitrogen immobilization and mineralization in soil. Journal of Soil Science 39, 393–406.

    Article  Google Scholar 

  • Bremer, E and van Kessel, C. (1992). Seasonal microbial dynamics after addition of lentil and wheat residues. Soil Science Society of America Journal 56, 1141–1146.

    Article  Google Scholar 

  • Bronson, K. F., and Fillery, I. R. P. (1998). Fate of nitrogen-l5-labelled urea applied to wheat on a waterlogged texture-contrast soil. Nutrient Cycling in Agroecosystems 51, 175–183.

    Article  Google Scholar 

  • Brooks, P. D., Stark, J. M., McInteer, B. B., and Preston, T. (1989). Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal 53, 1701–1711.

    Article  Google Scholar 

  • Buresh, R. J., Austin, E. R, and Craswell, E. T. (1982). Analytical methods in 15N research. Fertilizer Research 3, 37–62.

    Article  CAS  Google Scholar 

  • Burke, I., Mosier, A. R., Porter, L. K., and O’Deen, L. A. (1990). Diffusion of soil extracts for nitrogen and nitrogen-15 analyses by automated combustion/mass spectrometry. Soil Science Society of America Journal 54, 1190–1192.

    Article  Google Scholar 

  • Cabrera, M. L. and Beare, M. H. (1993). Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57, 1007 1012.

    Google Scholar 

  • Cameron, K. C., Harrison, D., Smith, N. P., and McLay, C. D. A. (1990). A method to prevent edge-flow in undisturbed soil cores and lysimeters. Australian Journal Soil Research 28, 879–886.

    Article  Google Scholar 

  • Craswell, E. T. and Saffigna,P. G. (1970). The mineralization of organic nitrogen in dry soil aggregates of different sizes. Plant and Soil 33, 383–392.

    Article  Google Scholar 

  • Davidson, E. A., Hart, S. C., Shanks, C. A., and Firestone, M. K. (1991). Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. Journal of Soil Science 42, 335–349.

    Article  CAS  Google Scholar 

  • DeDatta, S. K. (1995). Nitrogen transformations in wetland rice ecosystems. Fertilizer Research 42, 193–203.

    Article  CAS  Google Scholar 

  • Dejoux, J. F., Recous, S., Meynard, J. M., Trinsoutrot, I., and Leterme, Ph. (2000). Fate of nitrogen from winter-frozen rapeseed leaves: mineralization and uptake by rapeseed crop in spring. Plant and Soil 218, 257–272.

    Article  CAS  Google Scholar 

  • Geens, E. L., Davies, G. P., Maggs, J. M., and Barraclough, D. (1991). The use of mean pool abundances to interpret 15N tracer experiments II. Application. Plant and Soil 131, 97105.

    Google Scholar 

  • Hart, S. C., Nason, G. E., Myrold, D. D., and Perry, D. A. (1994). Dynamics of gross nitrogen mineralisation in an old-growth forest–the carbon connection. Ecology 75, 880–891.

    Article  Google Scholar 

  • Hauck, R. D. (1982). Nitrogen-isotope-ratio analysis. In `Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties.’ (Eds. A. L.Page, R. H. Miller and D. R. Keeney ) pp. 735–779. ( American Society of Agronomy: Madison, WI. )

    Google Scholar 

  • Holmes, R. M., McClelland, J. W., Sigman, D. M., Fry, B., and Peterson, B. J. (1998). Measuring 15N-NH4+ in marine, estuarine and fresh waters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Marine Chemistry 60, 235–243.

    Article  CAS  Google Scholar 

  • Hood, R. C., N’Goran, K., Aigner, M., and Hardarson, G. (1999). A comparison of direct and indirect 15N isotope techniques for estimating crop N uptake from organic residues. Plant and Soil 208, 259–270.

    CAS  Google Scholar 

  • Jamieson, N., Barraclough, D., Unkovich, M., and Monaghan, R. (1998). Soil N dynamics in a natural calcareous grassland under a changing climate. Biology and Fertility of Soils 27, 267–273.

    Google Scholar 

  • Jensen, E. S. (1996). Compared cycling in a soil-plant system of pea and barley residue nitrogen. Plant and Soil 182, 13–23.

    Article  CAS  Google Scholar 

  • Kirkham, D., and Bartholomew, W. V. (1954). Equations for following nutrient transformation in soil, utilizing tracer data. Soil Science Society of America Proceedings 18, 33–34.

    Article  CAS  Google Scholar 

  • Ladd, J. N., Oades, J. M., and Amato, M. (1981). Distribution and recovery of nitrogen from legume residues decomposing in soils sown to wheat in the field. Soil Biology and Biochemistry 13, 251–256.

    Article  CAS  Google Scholar 

  • MacKown, C. T., Brookes, P. D., and Smith M. S. (1987). Diffusion of nitrogen-15 Kjeldahl digests for isotope analysis. Soil Science Society America Journal 51, 87–90.

    Article  CAS  Google Scholar 

  • Mary, B., Recous, S., and Robin D. (1998). A model for calculating nitrogen fluxes in soil using N-15 tracing. Soil Biology and Biochemistry 30, 1963–1979.

    Article  CAS  Google Scholar 

  • Mattos Junior, D., Cantarella, H., Raij, B., and van Raij, B. (1995). Handling and storage of soil samples for preservation of inorganic nitrogen. Revista Brasileira de Ciencia do Solo 19, 423–431.

    Google Scholar 

  • MacDonald, A. J., Poulton, P. R., Powlson, D. S., and Jenkinson, D. S. (1997). Effects of season, soil type, and cropping on recoveries, residues and losses of 15N-labelled fertilizer applied to arable crops in spring. Journal of Agricultural Science, Cambridge 129, 125154.

    Google Scholar 

  • Middleboe, V. (1982). Analysis of nitrogen isotope ratios by emission spectrometry. In `Soil Analysis. Instrumental techniques and related procedures’, (Ed K. A. Smith ) pp. 355–375. ( Marcel Dekker Inc.: New York, USA. )

    Google Scholar 

  • Monaghan, R., and Barraclough, D. (1995). Contributions to gross N mineralization from 15N-labelled soil macroorganic matter fractions during laboratory incubation. Soil Biology and Biochemistry 27, 1623–1628.

    Article  CAS  Google Scholar 

  • Monaghan, R. (1995). Errors in çstimates of gross rates of nitrogen mineralization due to non-uniform distribution of the N label. Soil Biology and Biochemistry 27, 855–859.

    Article  CAS  Google Scholar 

  • Mulvaney, R. L., Khan, S. A., and Mulvaney, C. S. (1997). Nitrogen fertilizers promote denitrification. Biology and Fertility of Soils 24, 211–220.

    Article  CAS  Google Scholar 

  • Murphy, D. V., Bhogal, A., Shepherd, M., Goulding, K. W. T., Jarvis, S. C., Barraclough, D., and Gaunt, J. L. (1999). Comparison of 15N labelling methods to measure gross nitrogen mineralisation. Soil Biology and Biochemistry 31, 2015–2024.

    Article  CAS  Google Scholar 

  • Murphy, D. V., Fillery, I. R. P., and Sparling, G. P. (1997). A method to label soil cores with 15NH3 gas as a pre-requisite for 15N isotopic dilution and measurement of gross N mineralisation. Soil Biology and Biochemistry 35, 1731–1741.

    Article  Google Scholar 

  • Murphy, D. V., Fillery, I. R. P., and Sparling, G. P. (1998a). Seasonal fluctuations in gross N mineralisation, N consumption and microbial biomass in a Western Australian soil under different land use. Australian Journal Agricultural Research 49, 523–535.

    Google Scholar 

  • Murphy, D. V., Sparling, G. P., and Fillery, I. R. P. (1998b). Stratification of microbial biomass-C and N and gross N mineralisation with soil depth in two contrasting Western Australian agricultural soils. Australian Journal of Soil Research 36, 45–55.

    Google Scholar 

  • Myrold, D. D. (1990). Measuring denitrification in soils using 15N techniques. In `Denitrification in Soil and Sediment’, (Eds N. Revsbech and J. Sorensen ) pp. 181–198. ( Plenum Press: New York )

    Google Scholar 

  • Myrold, D. D., and Tiedje, J. M. (1986). Simultaneous estimation of several nitrogen cycle rates using 15N: Theory and application. Soil Biology and Biochemistry 18, 559–568.

    Article  CAS  Google Scholar 

  • Nishio, T., and Fujimoto T. (1989). Mineralization of soil organic nitrogen in upland fields as determined by a 1~NH4+ dilution technique, and absorption of nitrogen by maize. Soil Biology and Biochemistry 21, 661–665.

    Article  CAS  Google Scholar 

  • Nishio, T., Kanamori, T., and Fujimoto, T. (1985). Nitrogen transformations in an aerobic soil as determined by a 15NH4+ dilution technique. Soil Biology and Biochemistry 17, 149154.

    Google Scholar 

  • O’Deen, W. A. and Porter, L. K. (1979). Digestion tube diffusion and collection of ammonia for nitrogen-15 and total nitrogen determination. Analytical Chima Acta 51, 586–589.

    Article  Google Scholar 

  • Osier, H. R., Recous, S., Fillery, I. R. P., Gauci. C. S., Zhu, C., and Abbott L. K. (2000). Relationships between mite community structure and N flux rates in Western Australian agricultural soils. ( Submitted )

    Google Scholar 

  • Peoples, M. B., Freney, J. R., and Mosier, A.R. (1995). Minimising gaseous losses of nitrogen. In `Nitrogen Fertilization in the Environment’, (Ed P. E. Bacon ) pp. 565–602. ( Marcel Dekker Inc.: New York. )

    Google Scholar 

  • Pilbeam, C. J. (1996). Effect of climate on the recovery in crop and soil of 15N-labelled fertilizer applied to wheat. Fertilizer Research 45, 209–215.

    Article  Google Scholar 

  • Powlson, D. E., Pruden, G., Johnston, A. E., and Jenkinson, D. S. (1986). The nitrogen cycle in the Broadbalk Wheat Experiment: recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere. Journal Agricultural Science Cambridge 107, 591–609.

    Article  CAS  Google Scholar 

  • Pulleman, M., and Tietema, A. (1999). Microbial C and N transformations during drying and rewetting of coniferous forest floor material. Soil Biology and Biochemistry 31, 275–285.

    CAS  Google Scholar 

  • Recous, S., Aita, C., and Mary, B. (1999). In situ changes in gross N transformations in bare soil after the addition of straw. Soil Biology and Biochemistry 31, 119–133.

    Article  CAS  Google Scholar 

  • Recous, S., and Loiseau, P. (1997). Transformations and fate of fertiliser-N applied to annual crops and grasslands. In `Fertilization for Sustainable Plant Production and Soil Fertility’. 116 International World Fertilizer Congress of CIEC, (Eds O. Van Cleemput, S. Haneklaus, G. Hofinan, E. Schnug and A. Vermoesen ) pp. 302–310. ( University of Gent: Belgium. )

    Google Scholar 

  • Ross, D. J. (1992). Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation-extraction procedures in soils under pasture. Soil Biology and Biochemistry 24, 343–350.

    Article  Google Scholar 

  • Ross, D. S., and Bartlett, R. J. (1990). Effects of extraction methods and sample storage on properties of solutions obtained from forested Spodosols. Journal of Environmental Quality 19 108–113.

    Article  CAS  Google Scholar 

  • Saffigna, P. G. (1987). 15N methodology in the field. In Advances in Nitrogen Cycling in Agricultural Ecosystems. (Ed J. R. Wilson) pp. 433–451. ( CAB International, Wallingford, Oxon: United Kingdom. )

    Google Scholar 

  • Saghir, N. S., Mungwari, F. P., Mulvaney, R. L., and Azam, F. (1993). Determination of nitrogen by microdiffusion in mason jars: II. Inorganic nitrogen-15 in soil extracts. Communications in Soil Science Plant Analysis 24, 2747–2763.

    Article  CAS  Google Scholar 

  • Schimel, J. P. (1986). Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry 2, 345–357.

    Article  CAS  Google Scholar 

  • Schindler, F. V., and Knighton, R. E. (1999). Fate of fertilizer nitrogen applied to corn as estimated by the isotopic and difference methods. Soil Science Society America Journal 63, 1734–1740.

    Article  CAS  Google Scholar 

  • Sierra, J. (1992). Relationship between mineral N content and N mineralization rate in disturbed and undisturbed soil samples incubated under field and laboratory conditions. Australian Journal of Soil Research 30, 477–492.

    CAS  Google Scholar 

  • Sigman, D. M., Altabet, M. A., Michener, R., McCorkle, D. C. Fry, B., and Holmes, R. M. (1997). Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry 57, 227–242.

    CAS  Google Scholar 

  • Smith, C. J. (1987). Denitrification in the field. In `Advances in Nitrogen Cycling in Agricultural Ecosystems’. (Ed J. R. Wilson ) pp. 387–398. ( CAB International, Wallingford, Oxon: United Kingdom. )

    Google Scholar 

  • Smith, C. J., Chalk, P. M., Crawford, D. M., and Wood, J. T. (1994). Estimating gross nitrogen mineralisation and immobilisation rates in anaerobic and aerobic soil suspensions. Soil Science Society of America Journal 58, 1652–1660.

    Article  CAS  Google Scholar 

  • Sorensen, P. and Jensen, E. S. (1991). Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination. Analytical Chimica Acta 252, 210–213.

    Google Scholar 

  • Sparling, G. P., Murphy, D. V., Thompson, R. D., and Fillery, I. R. P. (1995). Short-term net N mineralization from plant residues and gross and net N mineralisation from soil organic N after rewetting of a seasonally dry soil. Australian Journal of Soil Research 33, 96 1973.

    Google Scholar 

  • Sparling, G.P. and Zhu C. (1993). Evaluation and calibration of methods to measure microbial biomass C and N in soils from Western Australia. Soil Biology and Biochemistry 25, 1793–1801.

    Article  Google Scholar 

  • Sparing, G. P., Zhu C., and Fillery, I. R. P. (1996). Microbial immobilisation of 15N from legume residues in soils of differing textures: Measurement by persulphate oxidation and ammonia diffusion methods. Soil Biology and Biochemistry 28, 170–175.

    Google Scholar 

  • Stark, J. M., and Hart, S. C. (1996). Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Science Society America Journal 60, 1846–1855.

    Article  CAS  Google Scholar 

  • Stevens, R. J., and R. J. Laughlin (1994). Determining nitrogen-15 in nitrite or nitrate by producing nitrous oxide. Soil Science Society of America Journal 58: 1108–1116.

    Article  CAS  Google Scholar 

  • Thompson, R. B., and Fillery, I. R. P. (1997). Transformation in soil and turnover to wheat of N from components of grazed pasture in south Western Australia Australian Journal Agricultural Research 48, 1033–1047.

    Article  CAS  Google Scholar 

  • Trinsoutrot, I., Nicolardot, B., Justes, E., and Recous, S. (2000). Decomposition in the field of residues of oilseed rape grown at two levels of nitrogen fertilisation. Effects on the dynamics of soil mineral nitrogen between successive crops. Nutrient Cycling in Agroecosystems 56, 125–137.

    Article  CAS  Google Scholar 

  • Watkins, N and Barraclough, D. (1996). Gross rates of N mineralisation associated with the decomposition of plant residues. Soil Biology and Biochemistry 28, 169–175.

    Article  CAS  Google Scholar 

  • Weier, K. L. (1996). Trace gas emissions from a trash blanketed sugarcane field in tropical Australia. In `Sugarcane: research towards efficient and sustainable production’. Sugarcane 2000 Symposium, pp. 271–272. ( CSIRO Tropical Crops and Pastures: Brisbane, Australia )

    Google Scholar 

  • Wessel, W. W., and Tietema, A. (1992). Calculating gross N transformations rates of 15N pool dilution experiments with acid forest litter: Analytical and numerical approaches. Soil Biology and Biochemistry 24, 931–942.

    Article  Google Scholar 

  • Woods L. E. (1989). Active organic matter distribution in the surface 15 cm of undisturbed and cultivated soil. Biology and Fertility of Soils 8, 271–278.

    Article  Google Scholar 

  • Zaccheo, P., Crippa, L., and Genevini, P. L. (1993). Nitrogen transformation in soil treated with 15N labelled dried or composted ryegrass. Plant and Soil 148, 193–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fillery, I.R.P., Recous, S. (2001). Use of Enriched 15N Sources to study Soil N Transformations. In: Unkovich, M., Pate, J., McNeill, A., Gibbs, D.J. (eds) Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Current Plant Science and Biotechnology in Agriculture, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9841-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9841-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5736-5

  • Online ISBN: 978-94-015-9841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics