Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 40))

Abstract

There is a persistent and perhaps widespread view that the behaviour of 15N in soils and plants is too complex to permit variations in its natural abundance to be used as a tracer or even as a probe to explore plant-soil relationships in natural ecosystems (Högberg 1997, Handley and Scrimgeour, 1997, Griffith et al. 1999). It is well established that fractionation in the content of 15N in plant and soil material may occur as a consequence of both biological and physico-chemical processes (Handley and Raven 1992, Högberg 1997). However it is argued that the processes determining δ15N signatures of plants and soils are little understood and interpretations of δ15N are generally empirical (Handley and Raven 1992). This may well apply despite the number of studies that have reported distinct patterns and differences in nitrogen isotope signatures between plant communities and between species within those communities. The interpretation of such results is somewhat controversial. Many such studies are based on what I would regard as rather young communities (post-glacial) and subject to very significant and poorly quantified anthropogenic inputs of nitrogen (see Pearson and Stewart 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah R. A. and Read D. J. (1986a). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilisation of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103, 481–493.

    Article  CAS  Google Scholar 

  • Abuzinadah R. A. and Read D. J. (1986b). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilisation by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytologist 103, 507–514.

    Article  CAS  Google Scholar 

  • Abuzinadah R. A. and Read D. J. (1988). Amino acids as nitrogen sources for ectomycorrhizal fungi: utilisation of individual amino acids. Transactions of the British Mycological Society 91, 473–479.

    Article  CAS  Google Scholar 

  • Abuzinadah R. A., Finlay R. D., and Read D. J. (1986). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilisation of protein by mycorrhizal plants of Pinus contorta. New Phytologist 103, 495–506.

    Article  CAS  Google Scholar 

  • Arnebrant K., Ek H., Finlay R. D., and Söderström B. (1993). Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytologist 124, 231–242.

    Article  Google Scholar 

  • Erskine, P. D., Bergstrom, D. M., Schmidt, S., Stewart, G. R., Tweedie, C. E., and Shaw, J. D. (1998). Subantarctic Macquarie Island–a model ecosystem for studying animal derived nitrogen sources using 15N natural abundance. Oecologia, 117, 187–193

    Article  Google Scholar 

  • Finlay R. D., Frostegârd C., and Sonnerfeldt A.-M. (1992). Utilisation of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytologist 120, 105–115.

    Article  Google Scholar 

  • Frey B. and Schlepp H. (1993). Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytologist 124, 221–230.

    Article  Google Scholar 

  • Garten C. T., Jr. (1993). Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed. Ecology 74, 2098–2113.

    Article  Google Scholar 

  • Griffith, H., Borland, A., Gillon, J., Harwood, K., Maxwell, K., and Wilson, J. (1999). Stable isotopes reveal exchanges between soil, plants and the atmosphere. In ‘Physiological Plant Ecology.’ (Eds. M.C. Press, J.D. Scholes and M.G. Baker ) pp 415–441. ( Blackwell Science Ltd: Oxford. )

    Google Scholar 

  • Handley, L. L. and Raven, J. A. (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell and Environment 15, 965–985.

    Article  CAS  Google Scholar 

  • Handley, L. L. and Scrimgeour, C. M. (1997). Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Advances in Ecological Research 27, 133–212.

    Article  Google Scholar 

  • Handley, L. L., Daft, M. J., Wilson, J., Scrimgeour, C. M., Ingelby, K., and Sattar, M. A. (1993). Effects of the ecto-and va-mycorrhizal fungi Hydnagium and Glomus clarum on the 815N and 813C values of Eucalyptus globulus and Ricinus communis. Plant Cell and Environment 16, 375–382.

    Article  CAS  Google Scholar 

  • Handley, L. L., Austin, A. T., Robinson, D., Scrimgeour, C. M., Raven, J. A., Heaton, T. H. E., Schmidt, S., and Stewart, G. R. (1999). The 15N natural abundance (815N) of ecosystem samples reflects measures of water availability. Australian Journal of Plant Physiology 26, 185–199.

    Article  Google Scholar 

  • Högberg, P. (1990). 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytologist 115, 483–486.

    Google Scholar 

  • Högberg, P. (1997). 15N natural abundance in soil-plant systems. New Phytologist 137, 179203.

    Google Scholar 

  • Michelson, A., Schmidt, I. K., Jonasson, S., Quarmby, C., and Sleep, D. (1996), Leaf 15N abundance of subarctic plants provides evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63.

    Article  Google Scholar 

  • Mizutani H., Hasegawa H., and Wada E. (1986). High nitrogen isotope ratio for soils of seabird rookeries. Biogeochemistry 2, 221–247.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K. J. and Fly, B. (1994). Nitrogen isotope studies in forest ecosystems. In ‘Stable Isotopes in Ecology and Environmental Science.’ (Eds K. Lathja and R. H. Michener.) pp. 22–44. ( Blackwell Scientific Publication: London. )

    Google Scholar 

  • Nadelhoffer, K. J., Shaver, G., Fry, B., Giblin, A., Johnson, L, and McKane, R. (1996). 15N natural abundance and N use by tundra plants. Oecologia 107, 386–394.

    Google Scholar 

  • Pate, J. S. and Unkovich, M. J. (1999). Measuring symbiotic nitrogen fixation: case studies of natural and agricultural ecosytems in a Western Australian setting.. In ‘Physiological Plant Ecology.’ (Eds. M. C. Press, J. D. Scholes and M. G. Baker ) pp 53–173. ( Blackwell Science Ltd: Oxford. )

    Google Scholar 

  • Pate, J. S., Stewart, G. R., and Unkovich, M. J. (1993). 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of componment species. Plant, Cell and Environment 16, 365–373.

    Google Scholar 

  • Pate, J. S., Unkovich, M. J., Erskine, P. D., and Stewart, G. R. (1998). Australian mulga ecosystems 813C and 15N abundance of biota components and their ecophysiological significance. Plant Cell and Environment 21, 1231–1242.

    Article  CAS  Google Scholar 

  • Pearson, J. and Stewart, G.R. (1993). The deposition of atmospheric ammonia and its effects on plants. (Tansley Review 56). New Phytologist 125, 283–305.

    Article  CAS  Google Scholar 

  • Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia 47, 376–391.

    Article  Google Scholar 

  • Robinson, D., Handley, L. L., and Scrimgeour, C. M. (1998). A theory for 15N/14N fractionation in nitrate-grown vascular plants. Planta 205, 397–406.

    Article  CAS  Google Scholar 

  • Schmidt, S. and Stewart, G. R. (1997). Waterlogging and fire impacts on nitrogen availability and utization in a subtropical wet heathland (wallum). Plant, Cell and Environment 20, 1231–1241.

    Article  Google Scholar 

  • Schmidt, S. and Stewart, G. R. (1999). Glycine metabolism by plant roots and its occurrence

    Google Scholar 

  • in Australian plant communities. Australian Journal of Plant Physiology 26, 253–264. Schulze E.-D., Gebauer G., Ziegler H., and Lange O. L. (1991). Estimates of nitrogen fixation

    Google Scholar 

  • by trees on an aridity gradient in Namibia. Oecologia 88, 451–455.

    Google Scholar 

  • Selles F., Karamanos R. E., and Kachanoski R. G. (1986). The spatial variability of nitrogen-15 and its relation to the variability of other soil properties. Soil Science Society of America Journal 50, 105–110.

    Article  CAS  Google Scholar 

  • Stewart, G. R., Schmidt, S., Handley, L. L., Turnbull, M. H., Erskine, P. D., and Joly, C. A. (1995). 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant, Cell and Environment 18, 85–90.

    Google Scholar 

  • Stock, W. D., Wienland, K. T., and Baker, A. C. (1995). Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evience from soil incubation studies and 15N natural abundance values. Oecologia 101, 375–382.

    Article  Google Scholar 

  • Sutherland R. A., van Kessel, C., Farrell R. E., and Pennock D. J. (1993). Landscape-scale variations in plant and soil nitrogen-15 natural abundance. Soil Science Society of America Journal 57, 169–178.

    Article  Google Scholar 

  • Tennakoon, K. U., Pate, J. S. and Arthur, D. (1997a) Ecophysiological aspects of the woody root hemiparasite Santalum acuminatum (R. Br.) A. DC and its common hosts in south western Australia. Annals of Botany 80, 245–256.

    Article  Google Scholar 

  • Tennakoon, K. U., Pate, J. S., and Stewart, G. R. (1997b). Haustorium-related uptake and metabolism of host xylem solutes by the root hemiparasitic shrub Santalum acuminatum (R. Br.) A. DC (Santalaceae). Annals of Botany 80, 257–264.

    Article  CAS  Google Scholar 

  • Turnbull, M. H., Goodall, R., and Stewart, G. R. (1995). The impact of mycorrhization on nitrogen source utilisation in Eucalyptus grandis and Eucalyptus maculata. Plant, Cell and Environment 18 1386–1394.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., Shearer, G., and Kohl, D. H. (1989). Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78, 383–388.

    Article  Google Scholar 

  • Yoneyama T. (1994). Nitrogen metabolism and fractionation of nitrogen isotopes in plants. In ‘Stable Isotopes in the Biosphere.’ (Eds E. Wada, T. Yoneyama, M. Minagawa, T. Ando and B.D. Fry ) pp 92–102. ( Kyoto University Press: Kyoto. )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stewart, G.R. (2001). What do δ15N Signatures tell Us about Nitrogen Relations in Natural Ecosystems?. In: Unkovich, M., Pate, J., McNeill, A., Gibbs, D.J. (eds) Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Current Plant Science and Biotechnology in Agriculture, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9841-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9841-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5736-5

  • Online ISBN: 978-94-015-9841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics