Skip to main content

Genetic diversity and differentiation of individual effective pollen clouds in trees

  • Chapter
Genetic Response of Forest Systems to Changing Environmental Conditions

Part of the book series: Forestry Sciences ((FOSC,volume 70))

Abstract

Tree populations suffer from a variety of natural environmental factors and Man’s action. The latter mostly leads to reductions not only in population size but also in population density. Reduction of population density generally means the reduction of possible mating contacts among trees. Consequently, the number of mating partners is reduced. Hence, the number of effective pollen parents of the seed produced by single trees is expected to decrease. This condition is responsible for a tendency towards increased genetic differentiation of pollen contributions. The genetic differentiation of individual effective pollen clouds is an important means of inference on reduced effective number of male mating partners. Reduced population density possibly enforces mating preferences for neighboring trees. If neighboring trees are on average more closely related than more distant trees, preferential mating among neighbors results in inbreeding even for completely self-incompatible or dioecious species. This situation is particularly likely to occur in naturally regenerated stands if gene flow through seed and pollen has been restricted and eventually results in reduced adaptedness and adaptability of progenies under heterogeneous environmental conditions. A reduced number of male mating partners of a cosexual tree may also mean restrictions in the relative amount of neighbor tree pollen and, hence, a relative increase of the tree’s own pollen present in its crown.

Consequently, the population density is likely to influence the adaptive potential of tree populations. However, it is difficult to define critical population densities which must be kept in order to avoid intolerable losses of adaptive capacities. Such critical densities are an outcome of the genetic system of a species but they also depend on environmental factors including pollen vectors. The critical population density may vary greatly depending on the environment, the physical structure of forests, and the mode of pollen transport. Although there exists ample evidence of long-distance transport of effective tree pollen, the reproduction system of trees is also characterized by a small-scale spatial pattern. This has a variety of consequences and is sensitive to anthropogenic influence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dounávi, A. 2000: Familienstrukturen in Buchenbeständen (Fagus sylvatica). Forstwiss. Dissertation, Univ. Göttingen. (http://webdoc.sub.gwdg.de/diss/2000/dounavi)

  • Farris, M.A. and Mitton, J.B. 1984: Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154

    Article  Google Scholar 

  • Finkeldey, R. 1994: A simple derivation of the partitioning of the genetic differentiation within subdivided populations. Theor. Appl. Genet. 89: 189–200

    Article  Google Scholar 

  • Finkeldey, R. 1995: Homogeneity of pollen allele frequencies of single seed trees in Picea abies (L) Karst plantations. Heredity 74: 451–463

    Article  Google Scholar 

  • Finkeldey, R. 2001: Genetische Untersuchungen zur Reproduktion von Teak (Tectona grandis L F.) in Thailand. In press

    Google Scholar 

  • Finkeldey, R., De Guzman, N. and Changtragoon, S. 1999: The mating system of Pterocarpus indicus Willd. at Mt. Makiling, Philippines. Biotropica: 31: 525–530

    Google Scholar 

  • Freytag, T. 1998: Genetische Strukturen ausgewählter Buchen und ihrer Nachkommen in einem Buchen-Eichen-Mischbestand. Forstwiss. Diplomarb. Univ. Göttingen.

    Google Scholar 

  • Gibson, J.P. and Hamrick, J.L. 1991: Heterogeneity in pollen allele frequencies among cones, whorls, and trees of table mountain pine (Pinus pungens). Amer. J. Bot. 78: 1244–1251

    Article  Google Scholar 

  • Gillet, E.M. 1997: Maximum likelihood estimators of the gametic contributions to single-plant progenies. Biometrics 53: 504–523

    Article  Google Scholar 

  • Gregorius, H.-R. 1978: The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math. Biosci. 41: 253–271

    Article  Google Scholar 

  • Gregorius, H.-R. 1985: Measurement of genetic differentiation in plant populations. pp. 276–285 in: Gregorius, H.-R. (ed.) Population Genetics in Forestry. Berlin, Heidelberg etc.: Springer Verlag

    Chapter  Google Scholar 

  • Gregorius, H.-R. and Roberds, J.H. 1986: Measurement of genetical differentiation among subpopulations. Theor. Appl. Genet. 71: 826–834

    Article  Google Scholar 

  • Hattemer, H.H 1991: Measuring genetic variation. pp. 2–19 in: Müller-Starck, G., Ziehe, M. (eds.) Genetic variation in European Populations of Forest Trees. Frankfurt am Main: J.D. Sauerländer’s Verlag

    Google Scholar 

  • Morgante, M., Vendramin, G.G. and Rossi, P. 1991: Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can. J. Bot. 69: 2704–2708

    Article  Google Scholar 

  • Müller[-Starck], G. 1976: A simple method of estimating rates of self-fertilization by analyzing isozymes in tree seeds. Silvae Genetica 25: 15–17

    Google Scholar 

  • Murawski, D.A. and Hamrick, J.L. 1991: The effect of the density of flowering individuals on the mating system of nine tropical tree species. Heredity 67: 167–174

    Article  Google Scholar 

  • Murawski, D.A. and Hamrick, J.L. 1992: The mating system of Cavanillesia platanifolia under extremes of flowering-tree density: a test of predictions. Biotropica 24: 99–101

    Article  Google Scholar 

  • Nei, M. 1973: Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321–3323

    Google Scholar 

  • Rettenberger, B. 1999: Untersuchungen zum Paarungs-und Genflußsystem von Pterocarpus angolensis in Kasane, Nordbotswana. Magisterarb. Fakultät f. Forstwiss. und Waldökologie, Univ. Göttingen

    Google Scholar 

  • Siregar, I. Z. 2000: Genetic aspects of the reproductive system of Pinus merkusii Jungh. et de Vriese in Indonesia. Forstwiss. Dissertation, Universität Göttingen. Göttingen: Cuvillier Verlag

    Google Scholar 

  • Ziehe, M. 1999: Anpassungsprozesse auf Populationsebene. pp. 115–134 in: Abschlußbericht 1994–1998 zum BMBF-Verbundprojekt “Veränderungsdynamik von Waldökosystemen”, Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen Bd. 61, Göttingen

    Google Scholar 

  • Ziehe, M., Starke R., Hattemer, H.H. and Turok, J. 1998: Genotypische Strukturen in Buchen-Altbeständen und ihren Samen. Allgem. Forst-u. Jagdztg. 169: 91–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hattemer, H.H., Ziehe, M., Finkeldey, R., Fromm, M. (2001). Genetic diversity and differentiation of individual effective pollen clouds in trees. In: Müller-Starck, G., Schubert, R. (eds) Genetic Response of Forest Systems to Changing Environmental Conditions. Forestry Sciences, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9839-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9839-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5928-4

  • Online ISBN: 978-94-015-9839-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics