Skip to main content

Mapping quantitative trait loci

  • Chapter
DNA-Based Markers in Plants

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 6))

Abstract

Different alleles at quantitative trait loci (QTL) cause genetic differences between individuals and families for quantitative traits (Bulmer 1980; Falconer 1981). QTL genotypes cannot be determined by inspecting the distributions of trait phenotypes alone. This is one of the fundamental problems of quantitative genetics. Historically important quantitative genetic parameters, e.g., additive genetic variance and heritability, summarize differences between alleles at QTL but do not shed light on the genetics of QTL. Methods for mapping QTL are needed to achieve this. QTL are mapped by using genetic markers linked to QTL to draw inferences about differences between alleles at QTL.

Reprinted without change from the first edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzalini, A., and Cox, D.R. (1984) Two new tests associated with analysis of variance. J.R. Statist. Soc. B. 46: 335–343

    Google Scholar 

  • Baker, R.J. (1988a) Tests for crossover genotype-environment interactions. Can. J. Plant Sci. 68: 405–410.

    Google Scholar 

  • Baker, R.J. (1988b) Analysis of genotype-environment interactions in crops. ISI Atlas Sci.: Animal and Plant Sci. 1: 1–4.

    Google Scholar 

  • Becker, H.C. and Leon, J. (1988) Stability analysis in plant breeding. Plant Breed. 101: 1–23. Bulmer, M.G. ( 1980 ) The Mathematical Theory of Quantitative Genetics. Oxford University Press, Oxford.

    Google Scholar 

  • Carbonell, E.A., Gerig, T.M., Balansard, E. and Asins, M.J. (1992) Interval mapping in the analysis of nonadditive quantitative trait loci. Biometrics 48: 305–315.

    Article  Google Scholar 

  • Carbonell, E.A., Asins, M.J., Baselga, M., Balansard, E., and Gerig, T.M. (1993) Power studies in the estimation of genetic parameters and the localization of quantitative trait loci for backcross and doubled haploid populations. Theor. Appl. Genet. 86: 411–416.

    Google Scholar 

  • Comstock, R.E. and Moll. R.H. (1963) Genotype-environment interactions. In: W.D. Hanson and H.F. Robinson (eds.), Statistical Genetics and Plant Breeding. NAS-NRC Publ. 982.

    Google Scholar 

  • Doebley, J. and Stec, A. (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129: 285–295.

    PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A., Wendel, J. and Edwards, M. (1990) Genetic and morphological analysis of a maize-teosinte Fz population: implications for the origin of maize. Proc. Natl. Acad. Sci. U.S.A. 87: 9888–9892.

    Google Scholar 

  • Dudley, J.W. (1984) A method of identifying lines for use in improving parents of a single-cross. Crop Sci. 24: 355–357.

    Article  Google Scholar 

  • Dudley, J.W. (1987) Modifications of methods for identifying inbred lines useful for improving parents of elite single crosses. Crop Sci. 27: 944–947.

    Article  Google Scholar 

  • Dudley, J.W. (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci. 33: 660–668.

    Article  CAS  Google Scholar 

  • Edwards, M.D. and Page, N.J. (1993) Evaluation of marker-assisted selection through computer simulation. Theor. Appl. Genet. (in press).

    Google Scholar 

  • Edwards, M.D., Stuber, C.W. and Wendel, J.F. (1987) Molecular marker facilitated investigations of quantitative trait loci in maize. I. Number, genomic distribution, and type of gene action. Genetics 116: 113–125.

    Google Scholar 

  • Falconer, D.S. (1981) Introduction to Quantitative Genetics. Longman, New York.

    Google Scholar 

  • Freeman, G.H. (1973) Statistical methods for the analysis of genotype-environment interactions. heredity 31: 339–354.

    CAS  Google Scholar 

  • Freund, R.J., Little, R.C. and Spector, P.C. (1986) SAS System for Linear Models, SAS, Cary, North Carolina.

    Google Scholar 

  • Gail, M. and Simon, R. (1985) Testing for qualitative interaction between treatment effects and patient subsets. Biometrics 41: 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, C.O. (1963) Estimates of genetic parameters in cross-fertilizing plants and their implications in plant breeding. In: W.D. Hanson and H.F. Robinson (eds.), Statistical Genetics and Plant Breeding. NAS-NRC Publ. 982.

    Google Scholar 

  • Gerloff, J. and Smith, O.S. (1988) Choice of method for identifying germplasm with superior alleles. I. Theoretical results. Theor. Appl. Genet. 76: 209–216.

    Google Scholar 

  • Gerloff, J. and Smith, O.S. (1988) Choice of method for identifying germplasm with superior alleles. I. Computer simulation results. Theor. Appl. Genet. 76: 217–227.

    Google Scholar 

  • Haley, C.S. and Knott, S.A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, W.D. (1963) Heritability. In: W.D. Hanson and H.F. Robinson (eds.), Statistical Genetics and Plant Breeding. NAS-NRC Publ. 982.

    Google Scholar 

  • Hayes, P.M., Liu, B.-H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Frankowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D., and Kleinhofs, A. (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392–401.

    Google Scholar 

  • Helentjaris, T., Slocum, M., Wright, S., Schaefer, A. and Nienhuis, J. (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 761–769.

    Google Scholar 

  • Jansen, R. (1992) A general mixture model for mapping quantitative trait loci by using molecular markers. Theor. Appl. Genet. 85: 252–260.

    Google Scholar 

  • Jansen, R. (1993a) Interval mapping multiple quantitative trait loci. Genetics 135: 205–211. Jansen, R. (1993b) Maximum likelihood in a generalized linear finite mixture model by using the EG algorithm. Biometrics (in press).

    Google Scholar 

  • Jensen, J. (1989) Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor. Appl. Genet. 78: 613–618.

    Google Scholar 

  • Kleinhofs, A., Kilian, A., Saghai Maroof, M.A., Biyashev, R.M., Hayes, P.M., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin,V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B.-H., Sorrells, M., Heun, M., Frankowiak, J.D., Hoffman, D., Skadsen, R. and Steffenson, B.J. (1993) A molecular, isozyme, and morphological map of thebarley (Hordeum vulgare) genome. Theor. Appl. Genet. 86: 705–712.

    Google Scholar 

  • Knapp, S.J. (1989) Quasi-Medelian genetic analysis of quantitative trait loci using molecular marker linkage maps. In: G. Roebbelen, (ed.), Proc. XIIth Eucarpia Congress (European Plant Breeding Congress), Gitttingen, Germany.

    Google Scholar 

  • Knapp, S.J. (1991) Using molecular markers to map multiple quantitative trait loci: Models for backcross, recombinant inbred, and doubled haploid progeny. Theor. Appl. Genet. 81: 333–338.

    Google Scholar 

  • Knapp, S.J. and Bridges, W.C. (1990) Using molecular markers to estimate quantitative trait locus parameters: Power and genetic variances for unreplicated and replicated progeny. Genetics 126: 769–777.

    Google Scholar 

  • Knapp, S.J., Bridges, W.C. and Birkes, D. (1990) Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet. 79: 583–592.

    Google Scholar 

  • Knapp, S.J., Bridges, W.C. and Liu, B.-H. (1992) Mapping quantitative trait loci using nonsimultaneous and simultaneous estimators and hypothesis tests. In: J.S. Beckmann and T.S. Osborn (eds.), Plant Genomes: Methods for Genetic and Physical Mapping, pp. 209–237. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Knott, S.A. and Haley, C.S. (1992) Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet. Res. 60: 139–151.

    Google Scholar 

  • Lande, R. (1992) Marker-assisted selection in relation to traditional methods of plant breeding. In: H.T. Stalker and J.P. Murphy (eds.), Plant Breeding in the 1990s. proc. Symp. Plant Breeding in the 1990s, C.A.B. International, Wallingford, U.K.

    Google Scholar 

  • Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756.

    PubMed  CAS  Google Scholar 

  • Lander, E.S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Landry, B.S., Kesseli, R.V., Fararra, B., and Michelmore, R.W. (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphisms, isozymes, disease resistance, and morphological markers. Genetics 116: 331–337.

    PubMed  CAS  Google Scholar 

  • Lin, C.S., Binns, M.R. and Lefkovitch, L.P. (1986) Stability analysis: Where do we stand? Crop Sci. 26: 894–900.

    Article  Google Scholar 

  • Lou, Z.W. and Kearsey, M.J. (1989) Maximum likelihood estimation of linkage between a marker gene and a quantitative trait locus. Heredity 66: 117–124.

    Google Scholar 

  • Martinez, O. and Curnow, R.N. (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480–488.

    Google Scholar 

  • McLachlan, G.J. and Basford, K.E. (1988) Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York.

    Google Scholar 

  • Misevic, D. (1988) Evaluation of three test statistics used to identify maize inbred lines with new favorable alleles not present in elite single crosses. Theor. Appl. Genet. 77: 402–408.

    Google Scholar 

  • Nienhuis, J., Helentjaris, T., Slocum, M., Ruggero, B. and Schaefer, A. (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci. 27: 797–803.

    Article  Google Scholar 

  • Ooijen, J.W. (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 84: 803–811.

    Google Scholar 

  • Osborn, T.C., Alexander, D.C. and Fobes, F. (1987) Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor. Appl. Genet. 73: 350–356.

    Google Scholar 

  • Page, N.P. (1991) A computer simulation evaluation of the utility of marker-assisted selection. Ph.D. thesis, University of Minnesota, St. Paul, MN.

    Google Scholar 

  • Paterson, A.H., Lander, E.S. Hewitt, J.D., Paterson, S., Lincoln, S.E. and Tanksley, S.D. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Google Scholar 

  • Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln,S.E., Lander, E.S. and Tanksley, S.D. (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197.

    Google Scholar 

  • Rhodolphe, F. and Lefort, M. (1993) A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 134: 1276–1277.

    Google Scholar 

  • Rosielle, A.A. and Hamblin, J. (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943–946.

    Article  Google Scholar 

  • Satterthwaite (1946) An approximate distribution of estimates of variance components. Biometrics Bull. 2: 110–114.

    Google Scholar 

  • Searle, S. (1971) Linear Models. John Wiley and Sons, NewYork.

    Google Scholar 

  • Shukla, G.K. (1972) Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, S.P. (1989) Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor. Appl. Genet. 77: 815–819.

    Google Scholar 

  • Smith, C. (1967) Improvement of metric traits through specific genetic loci. Anim. Prod. 9:349–358. Stuber, W.C. and Sisco, P.H. (1991) Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrids. Ann. Corn Sorghum Res. Conf. 46: 104–133.

    Google Scholar 

  • Stuber, C.W., Edwards, M.D. and Wendel, J.F. (1987) Molecular-marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27: 639–648.

    Google Scholar 

  • Stuber, C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. and Lander, E.S. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetic 132: 823–839.

    CAS  Google Scholar 

  • Soller, M. and Beckmann, J.S. (1990) Marker-based mapping of quantitative trait loci using replicated progenies. Theor. Appl. Genet. 80: 205–208.

    Google Scholar 

  • Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985) Statistical Analysis of Finite Mixture Distributions. Wiley and Sons, New York.

    Google Scholar 

  • Troyer, A.F. (1990) A retrospective view of corn genetic resources. J. Hered. 81: 17–24

    Google Scholar 

  • Troyer, A.F., Openshaw, S.J. and Knittle, K.H. (1988) Measurement of genetic diversity among popular commercial corn hybrids. Crop Sci. 28: 481–485.

    Article  Google Scholar 

  • van Ooijen, J.W. (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 84: 803–811.

    Google Scholar 

  • Weller, J.I. (1986) Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627–640.

    Article  PubMed  CAS  Google Scholar 

  • Westcott, B. (1986) Some methods of analyzing genotype-environment interaction. Heredity 56: 243–253.

    Article  Google Scholar 

  • Young, N.D. and Tanksley, S.D. (1981a) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor. Appl. Genet. 77: 95–101.

    Google Scholar 

  • Young, N.D. and Tanksley, S.D. (1939b) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcrossing. Theor. Appl. Genet. 77: 353–359.

    Google Scholar 

  • Zanoni, U. and Dudley, J.W. (1989) Comparison of different methods of identifying inbreds useful for improving elite maize hybrids. Crop Sci. 29: 577–582.

    Article  Google Scholar 

  • Zhang, W. and Smith, C. (1992) Computer simulation of marker-assisted selection utilizing linkage disequilibrium. Theor. Appl. Genet. 83: 813–820.

    Google Scholar 

  • Zobel, R.W., Wright, M.J. and Gauch, H.G.Jr. (1988) Statistical analysis of a yield trial. Crop Sci. 80: 388–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knapp, S.J. (2001). Mapping quantitative trait loci. In: Phillips, R.L., Vasil, I.K. (eds) DNA-Based Markers in Plants. Advances in Cellular and Molecular Biology of Plants, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9815-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9815-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5672-6

  • Online ISBN: 978-94-015-9815-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics