Skip to main content

Phaseolus vulgaris — The common bean integration of RFLP and RAPD-based linkage maps

  • Chapter
DNA-Based Markers in Plants

Abstract

Gregor Mendel (1866) conducted the first genetic analysis of common beans. Mendel studied the inheritance of growth habit, and pod color and shape in a progeny between P. vulgaris and P. nanus (= P. vulgaris, bush type) in order to confirm his findings with peas. Unfortunately, further studies on the inheritance of flower and seed coat color were hampered by his use of interspecific hybrids between P. nanus and P. multiflorus (= P. coccineus), which are now known to yield aberrant ratios. Later, Shaw and Norton (1918) used intraspecific crosses and determined that pigmentation and pigmentation patterns of the seed coat are controlled by multiple independent factors. A few years later Sax (1923) began to identify the multiple components that determine the inheritance of these traits. A single factor was identified as responsible for pigmentation, while two linked factors were identified to control mottling; this appears to be the first report of linkage in beans. Furthermore, Sax (1923) was the first to report linkage between a Mendelian character (seed coat pigmentation) and a QTL (for seed size). Although the common bean was used as experimental material at the inception of genetics, its genetic characterization has lagged behind that of many other crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Blondon A., Sévignac M. and Dron M. (1994) A. genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37: 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Ahn S. and Tanksley S.D. (1993) Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Arumuganatham K. and Earle E.D. (1991) Nuclear DNA content of some important plant species. Plant Molec. Biol. Rept. 9: 208–218.

    Google Scholar 

  • Bassett M.J. (1989) List of genes-Phaseolus vulgaris L. Annu. Rept. Bean Improv. Coop. 32: 1–7.

    Google Scholar 

  • Bassett M.J. (1991) A revised linkage map of common bean. HortScience 26: 834–836.

    Google Scholar 

  • Beebe S.E., Ochoa I., Skroch P.W., Nienhuis J. and Tivang J. (1995) Genetic diversity among common bean breeding lines developed for Central America. Crop Sci. 35: 1178–1183.

    Article  Google Scholar 

  • Bonierbale M., Plaisted R. and Tanksley S.D. (1988) Construction of comparative genetic maps of potato and tomato based on a common set of cloned sequences. Genetics 120: 1095–1103.

    PubMed  CAS  Google Scholar 

  • Boutin S.R., Young N.D., Olson T.C., Yu Z.H., Shoemaker R.C., Vallejos C.E. (1995) Genome conservation among three legume genera detected with DNA markers. Genetics 38: 928–937.

    CAS  Google Scholar 

  • Briicher H. (1988) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed.) Genetic resources of Phaseolus beans (pp. 185–214 ) Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Burr B., Burr F.A., Thompson K.H., Albertson M.C. and Stuber C.W. (1988) Gene mapping with recombinant inbreds in maize. Genetics 118: 519–526.

    PubMed  CAS  Google Scholar 

  • Cheng S.S., Bassett M.J. and Quesenberry K.H. (1981) Cytogenetic analysis of interspecific hybrids between common bean and scarlet runner bean. Crop Sci. 21: 75–79.

    Article  Google Scholar 

  • Chase C.D., Ortega V.M. and Vallejos C.E. (1991) DNA restriction fragment length polymorphisms correlate with isozyme diversity in Phaseolus vulgaris L. Theor. Appl. Genet. 81: 806–811.

    Google Scholar 

  • Coyne D.P. (1968) Correlation, heritability, and selection of yield components in field beans, Phaseolus vulgaris L. Proc. Amer. Soc. Hort. Sci. 93: 388–396.

    Google Scholar 

  • Edwards K., Cramer C.L., Bolwell G.P., Dixon R.A., Schuch W. and Lamb C.J. (1985) Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc. Natl. Acad. Sci. USA 82: 6731–6735.

    Google Scholar 

  • Gepts P. and Bliss F.A. (1985) F1 hybrid weakness in the common bean: Differential geographic origin suggests two gene pools in cultivated germplasm. J. Hered. 76: 447–450.

    Google Scholar 

  • Gepts P., Osborn T.C., Rashka K. and Bliss F.A. (1986) Phaseolin protein variability in wild forms and land races of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ. Bot. 40: 451–468.

    Google Scholar 

  • Hidalgo R. (1991) CIAT’s world Phaseolus collection. In: van Schoonhoven A. and Voysest O (eds.) Common beans: research for crop improvement (pp. 163–197 ) C. A.B. International, Wallingford, UK.

    Google Scholar 

  • Hoogenboon G., Jones J.W., White J.W. and Boote K.J. (1988) BEANGRO V 1.0: Dry bean crop growth simulation model: user’s guide. Department of Agricultural Engineering. University of Florida.

    Google Scholar 

  • Hucl P. and Scoles G.J. (1985) Interspecific hybridizations in the common bean: a review. HortSci. 20: 352–357.

    Google Scholar 

  • Johns M.A., Skroch P.W., Nienhuis J., Hinrichsen P., Bascur G., Munoz-Schick C. (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37: 605–613.

    Article  Google Scholar 

  • Jung G.W., Coyne D.P., Skroch P.W., Nienhuis J., Arnaud-Santana E., Bokosi J., Ariyarathne H.M., Steadman J.R., Beaver J.S., and Kaeppler S.M. (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J. Am. Soc. Hort. Sci. 121: 794–803.

    Google Scholar 

  • Jung G.W., Skroch P.W., Coyne D.P., Nienhuis J., Arnaud-Santana E., Ariyarathne H.M., Kaeppler S.M., and Bassett M.J. (1997) Molecular-marker-based genetic analysis of tepary bean-derived common bacterial blight resistance in different developmental stages of common bean. J. Am. Soc. Hort. Sci. 122: 329–337.

    Google Scholar 

  • Keller B., Sauer N. andLamb C.J. (1988). Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO 12: 3625–3633.

    Google Scholar 

  • Knight M.R. and Jenkins G.I. (1992) Genes encoding the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase in Phaseolus vulgaris L.: nucleotide sequence of cDNA clones and initial studies of expression. Plant Mol. Biol. 18: 567–579.

    CAS  Google Scholar 

  • Koenig R. and Gepts P. (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Gent. 78: 809–817.

    Article  Google Scholar 

  • Lander E.S., Green P., Abrahamson J., Baarlow A., Daly M.J., Lincoln SE and Newburg L. (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Google Scholar 

  • Lincoln S.E., Daly M. and Lander E.S. (1992) Constructing genetic maps with MAPAMKER/ EXP 3.0. Whitehead Institute Technical Report. 3rd edition.

    Google Scholar 

  • Mehdy M.C. and Lamb C.J. (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO 6: 1527–1533.

    CAS  Google Scholar 

  • Melake Berhan A., Hulbert S.H., Butler L.G. and Bennetzen J.L. (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor. Appl. Genet. 86: 598–604.

    Google Scholar 

  • Mendel G. (1866) Experiments in plant hybridisation. Translated by the Royal Horticultural Society of London in 1938. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Milbourne D., Meyer R., Bradshaw J.E., Baird E., Bonar N., Provan J., Powell W. and Waugh R. (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molec. Breed. 3: 127–136.

    Google Scholar 

  • Moreno J. and Chrispeels M.J. (1989) A lectin gene encodes the -amylase inhibitor of the common bean. Proc. Natl. Acad. Sci. USA 86: 7885–7889.

    Article  PubMed  CAS  Google Scholar 

  • Nodari R.O., Tsai S.M., Gilbertson R.L., Gepts P. (1993) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor. Appl. Genet. 85: 513–520.

    Google Scholar 

  • Olson M., Hood L., Cantor C., and Botstein D. (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435.

    Article  PubMed  CAS  Google Scholar 

  • Parker J.P. and Michaels T.E. (1986) Simple genetic control of hybrid plant development in interspecific crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding 97: 315–323.

    Article  Google Scholar 

  • Paterson A.H, Lander E.S., Hewit J.D., Peterson T.S., Lincoln S.E. and Tanksley S.D. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Provvidenti R. (1987) List of genes in Phaseolus vulgaris for resistance to viruses. Annu. Rept. Bean Improv. Coop. 30: 1–4.

    Google Scholar 

  • Rivkin M.I., Vallejos C.E. and McClean P.E. (1998) Disease-resistance related sequences in common bean. Genome (In press).

    Google Scholar 

  • Rommens J.M., lannuzzi M.C., Kerem B.-S., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., Zsiga M., Buchwald M., Riordan J.R., Tsui L.-C. and Collins F.S. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–265.

    Article  PubMed  CAS  Google Scholar 

  • Sarria R., Lyznik A., Vallejos C.E. and Mackenzie S.A. (1998) A cytoplamic male sterility-associated mitochondria) peptide in common bean is post-translationally regulated. Plant Cell 10: 1217–1228.

    PubMed  CAS  Google Scholar 

  • Sauer N., Corbin D.R., Keller Band Lamb C.J. (1990) Cloning and characterization of a wound-specific hydroxyproline-rich glycoprotein in Phaseolus vulgaris. Plant Cell Environ. 13, 257–266.

    Article  CAS  Google Scholar 

  • Shaw J.K. and Norton J.B. (1918) The inheritance of seed-coat color in garden beans. Massachusetts Agric. Exp. Sta. Bull. 185: 58–104.

    Google Scholar 

  • Shii C.T., Rabakoarihanta A., Mok M.C., and Mok D.W.S. (1982) Embryo development in reciprocal crosses of Phaseolus vulgaris L. and P. coccineus Lam. Theor. Appl. Genet. 62: 59–64.

    Google Scholar 

  • Skroch P.W., Nienhuis J. (1995) Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes. Theor. Appl. Genet. 91: 1078–1085.

    Google Scholar 

  • Sun S.M., Slightom J.L. and Hall T.C. (1981) Intervening sequence in a plant gene–comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature 289: 37–41.

    Article  CAS  Google Scholar 

  • Talbot, D.R., AdangM.J., Slighton J.L. and Hall T.C. (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein of Phaseolus vulgaris L. Molec. Gen. Genet. 198: 42–49.

    Google Scholar 

  • Tanksley S.D., Bernatzky R., Lapitan L.L., and Prince J.P. (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85: 6419–6423.

    Google Scholar 

  • Thompson W.F., Everett M., Polans N.O. and Jorgensen R.A. (1983) Phytochrome control of RNA levels in developing pea and mungbean leaves. Planta 158: 487–500.

    Article  CAS  Google Scholar 

  • Tucker M.L., Sexto R., Del Campillo E. and Lewis L.N. (1988) Bean abscission cellulase. Characterization of a cDNA clone and regulation of gene expression by ethylene and auxin. Plant Physiol. 88: 1257–1262.

    Google Scholar 

  • Vallejos C.E. and Chase C.D. (199la) Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor. Appl. Genet. 81: 413–419.

    Google Scholar 

  • Vallejos C.E. and Chase C.D. (199 lb) Extended linkage map for the phaseolin linkage group of Phaseolus vulgaris L. Theor. Appl. Genet. 82: 353–357.

    Google Scholar 

  • Vallejos C.E., Sakiyama N.S. and Chase C.D. (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131: 733–740.

    PubMed  CAS  Google Scholar 

  • Wallace D.H. and Masaya P.N. (1988) Using yield trial data to analyze the physiological genetics of yield accumulation and the genotype X environment interaction effects on yield. Annu. Rept. Bean Improv. Coop. 31: vii-xxiv.

    Google Scholar 

  • Williams C.E. and St. Clair D.A. (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36: 619–630.

    CAS  Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.

    Google Scholar 

  • Young N.D., Kumar L., Menacio-Hautea D., Danesh D., Talekar N.S., Shanmugasundarum N.S. and Kim D.H. (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor. Appl. Genet. 84: 839–844.

    Google Scholar 

  • Zheng J., Nakata M., Uchiyama H., Morikawa H. and Tanaka R. (1991) Giemsa C-banding pattern in several species of Phaseolus L. and Vigna Savi, fabacea. Cytologia 56: 459–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vallejos, C.E., Skroch, P.W., Nienhuis, J. (2001). Phaseolus vulgaris — The common bean integration of RFLP and RAPD-based linkage maps. In: Phillips, R.L., Vasil, I.K. (eds) DNA-Based Markers in Plants. Advances in Cellular and Molecular Biology of Plants, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9815-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9815-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5672-6

  • Online ISBN: 978-94-015-9815-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics