Skip to main content

An integrated RFLP map of Arabidopsis thaliana

  • Chapter
DNA-Based Markers in Plants

Abstract

Over the past several years, Arabidopsis thaliana has gained increasing popularity as a model system for the study of plant biology. Its short life cycle, small size and large seed output make it well suited for classical genetic analysis (reviewed in Meyerowitz 1987). Mutations have been described affecting a wide range of fundamental developmental and metabolic processes (reviewed in Estelle and Somerville 1986). A genetic linkage map consisting of some 90 loci has been assembled (Koornneef 1987) and an increasing number of cloned genes are available. In addition, Arabidopsis is ideally suited for physical mapping studies since it has a very small genome (approximately 100,000 kb; Hauge and Goodman, unpub. Result) and a remarkably low content of interspersed repetitive DNA (Pruitt and Meyerowitz 1986). The availability of a complete physical map of the Arabidopsis genome will greatly simplify the cloning of any gene based solely on its mutant phenotype and genetic map location. For the map to be of any utility it is necessary to align the physical map with the classical genetic linkage map via an RFLP map.

Reprinted without change from the first edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S. and Meyerowitz, E.M. (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 85: 6856–6860.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, J.M., Cartinhour, S. and Goodman H.M. (1992) AAtDB, an Arabidopsis thaliana database. Plant Mol. Biol. Rep. 10: 308–309, 409–410.

    Google Scholar 

  • Estelle, M.A. and Somerville, C.R. (1986) The mutants of Arabidopsis. Trends Genet. 2: 89–93.

    Article  Google Scholar 

  • Hauge, B.M., Hanley, S.M., Cartinhour, S., Cherry, J.M., Goodman, H.M., Koomneef, M., Stam, P., Chang, C., Kempin, S., Medrano, L. and Meyerowitz, E.M. (1993) An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant J. 3: 745–754.

    Article  CAS  Google Scholar 

  • Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The Homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.

    Article  PubMed  CAS  Google Scholar 

  • Koomneef, M. (1987) Linkage map of Arabidopsis thaliana (2n = 10). In: S.J. O’Brien (ed.), Genetic Maps, pp. 742–745. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Meyerowitz, E.M. (1987) Arabidopsis thaliana. Ann. Rev. Genet. 21: 93–111.

    Google Scholar 

  • Nam, H.-G., Giraudat, J., den Boer, B., Moonan, F., Loos, W.D.B., Hauge, B.M. and Goodman, H.M. (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1: 699–705.

    PubMed  CAS  Google Scholar 

  • Pruitt, R.E. and Meyerowitz, E.M. (1986) Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187: 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Shirley, B., Hanley, S. and Goodman, H.M. (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4: 333–347.

    PubMed  CAS  Google Scholar 

  • Stam, P. (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J. 3: 739–744.

    Article  CAS  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goodman, H.M. et al. (2001). An integrated RFLP map of Arabidopsis thaliana . In: Phillips, R.L., Vasil, I.K. (eds) DNA-Based Markers in Plants. Advances in Cellular and Molecular Biology of Plants, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9815-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9815-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5672-6

  • Online ISBN: 978-94-015-9815-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics