Skip to main content

Ozone-Induced Cell Death

Reactive oxygen species as signal molecules regulating cell death

  • Chapter
  • 166 Accesses

Part of the book series: Tree Physiology ((TREE,volume 2))

Abstract

Ozone exposure induces oxidative stress in plant cells in a similar way in both trees and annual plants. As a result of exposure to ozone, several different responses, such as alterations in gene expression, and ultimately, cell death by the active and regulated process of oxidative cell death can be detected. Oxidative cell death takes place in plants also in response to other stress factors, such as pathogen attack. Signal transduction during oxidative cell death is poorly understood, but involvement of ethylene, jasmonic acid, and salicylic acid mediated signaling pathways have been implicated. Most of this knowledge is derived from annual model species, such as Arabidopsis thaliana, but is applicable to tree species as well. These results suggest that ozone damage, also in trees, is a result of deleterious firing by the reactive oxygen species of pathways normally associated with the plant hypersensitive response to pathogens, where reactive oxygen species have a central and integral role in regulating programmed cell death. Establishment of EST libraries and methods for functional genomics and proteomics in novel plant species will allow a more detailed elucidation of the mechanisms involved in ozone-induced cell death in trees as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allona I, Quinn M, Shoop E, Swope K, St.Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing, Proc. Natl. Acad. Sci. USA. 95, 9693–9698.

    Article  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity, Cell. 92, 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature, Plant J. 17, 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway, Proc. Natl. Acad. Sci. USA. 92, 40954098.

    Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants, Curr. Opin. Plant Biol. 1, 316–323 Drew MC, He C-J, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots, Trends Plant Sci. 5, 123–127.

    Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525–545.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging, Plant J. 4, 327–341.

    CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses, Plant Cell. 8, 1773–1791.

    PubMed  CAS  Google Scholar 

  • Heath RL, Taylor GE Jr (1997) Physiological processes and plant responses to ozone exposure. In Sandermann H, Wel’burn AR, Heath RL, eds, Forest decline and ozone, Vol 127. Springer-Verlag, Berlin,Heidelberg, pp 317–368.

    Chapter  Google Scholar 

  • Johnson,PR; Ecker,JR (1998) The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 32, 227–254.

    Article  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone, Plant Cell Environ. 17, 783–794.

    Article  Google Scholar 

  • Kärenlampi L, Skärby L (1996) Critical levels for ozone in Europe: Testing and finalizing the concepts. UN-ECE workshop report, University of Kuopio, Kuopio, Finland.

    Google Scholar 

  • Kettunen R, Overmyer K, Kangasjärvi J (1999) The role of ethylene in the formation of cell damage during ozone stress. Does ozone-induced cell death require concomitant AOS and ethylene production. In Kanellis A, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D, eds, Biology and biotechnology of the plant hormone ethylene II. Kluwer Academic Publishers, Dortreth, pp 299–306.

    Chapter  Google Scholar 

  • Kiiskinen M, Korhonen M, Kangasjärvi J (1997) Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mptl). Ozone stress induces Mptl mRNA accumulation in birch (Betula pendula Roth), Plant Mol. Biol. 35, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Kley D, Kleinman M, Sandermann H Jr, Krupa S (1999) Photochemical oxidants: State of the science, Environ. Pollut. 100, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Koch JR, ScherzerAJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation, Plant Physiol. 118, 1243–1252.

    CAS  Google Scholar 

  • Koch,JR; Creelman,RA; Eshita,SM; Seskar,M; Mullet,JE; Davis,KR (2000) Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol. 123, 487–496.

    Article  Google Scholar 

  • Korhonen MS, Pellinen R, Kiiskinen M, Kangasjärvi J (1998) Cellular-molecular diagnostics of ozone injury in birch (Betula pendula Roth). In De Kok LJ, Stulen I, eds, Responses of Plant Metabolism to Air Pollution. Backhuys Publishers, Leiden, The Netherlands, pp pp. 351–354. In Press.

    Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997) Ozone responses of trees: Results from controlled chamber exposures at the GSF phytotron. In Sandermann H, ed, Ecological Studies, 127: Forest decline and ozone. Springer-Verlag, Heidelberg, pp 163–200.

    Google Scholar 

  • Langebartels C, Ernst D, Kangasjärvi J, Sandermann H Jr (2000a) Ozone effects on plant defense. In Packer L, Sies H, eds, Singlet oxygen, UV-A and ozone: Methods in enzymology, Vol 319. Academic Press, San Dieco, CA, pp 520–535.

    Chapter  Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H Jr (2000b) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In Inzé D, Van Montagu M, eds, Oxidative stress in plants. Harwood, Amsterdam, In Press.

    Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent, Plant Cell. 6, 581–588.

    Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms, Physiol. Plant. 101, 746–753. O’Donnell PJ, Calvert C, Atzorn R, Wastemack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants, Science. 274, 1914–1917.

    Google Scholar 

  • Örvar BL, McPherson J, Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury, Plant J. 11, 203–212

    Article  PubMed  Google Scholar 

  • Orzäeez D, Granell A (1997) DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum, Plant J. 11, 137–144.

    Article  Google Scholar 

  • Overmyer K, Kangasjärvi J, Kuittinen T, Saarma M (1998) Gene expression and cell death in ozone-exposed plants: Is programmed cell death involved in ozone damage in ozone sensitive Arabidopsis mutants? In De Kok L, Stulen I, eds, Responses of Plant Metabolism to Air Pollution and Global Change. Backhuys Publishers, Leiden, pp 403–406.

    Google Scholar 

  • Overmyer,K; Tuominen,H; Kettunen,R; Betz,C; Langebartels,C; Sandermann, H,Jr; Kangasjärvi,J (2000) The ozone-sensitive Arabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signalling pathways in regulating superoxide-dependent cell death. Plant Cell 12, 1849–1862.

    Google Scholar 

  • Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought, New Phytol. 138, 295–305.

    Article  Google Scholar 

  • Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells, Plant J. 20, 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants, Plant Cell. 9, 1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Rao M V, Davis K R (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid, Plant J. 17, 603–614

    Article  PubMed  CAS  Google Scholar 

  • Rao,MV; Lee,HI; Creelman,RA; Mullet,JA; Davis,KR (2000) Jasmonic acid signalling modulates ozone-induced hypersensitive cell death. Plant Cell 12, 1633–1646.

    Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth, Plant Cell. 11, 1695–1708.

    PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression, Curr. Opin. Plant Biol. 1, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions, Trends Plant Sci. 3, 47–50.

    Article  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, van Camp W, Inzé D, Langebartels C, Sandermann H Jr (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3, Plant J 16, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants, Free Rad. Biol. Med. 23, 480–488.

    Article  PubMed  CAS  Google Scholar 

  • Somerville C (2000) The twentieth century trajectory of plant biology, Cell. 100, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Stepanova,AN; Ecker,JR (2000) Ethylene signaling: from mutants to molecules. Curr. Opin. Plant Biol. 3, 353–360.

    Article  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlén M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: Analysis of 5,692 expressed sequence tags, Proc. Natl. Acad. Sci. USA. 95, 13330–13335.

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level, J. Plant Physiol. 148, 179–188.

    Article  CAS  Google Scholar 

  • Tuomainen J, Betz C, Kangasjärvi J, Ernst D, Yin ZH, Langebartels C, Sandermann H Jr (1997) Ozone induction of ethylene emission in tomato plants: Regulation by differential transcript accumulation for the biosynthetic enzymes, Plant J. 12, 1151–1162.

    Article  CAS  Google Scholar 

  • Valjakka M, Tuhkanen E, Kangasjärvi J, Vapaavuori E (1999) Expression of photosynthesis and senescence-related genes during leaf development and senescence in silver birch (Betula pendula Roth) seedlings, Physiol. Plant. 106, 302–310.

    Article  CAS  Google Scholar 

  • Van Camp W, Van Montagu M, Inzé D (1998) H O and NO: redox signals in disease resistance, Trends Plant Sci. 3, 330–334.

    Article  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants, Nature 337, 495–500.

    Article  Google Scholar 

  • Xu Y, Chang P-FL, Liu D, Narasimhan ML, Ragothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate, Plant Cell. 6, 1077–1085.

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes, Plant Physiol. 115, 737–751.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kangasjärvi, J., Tuominen, H., Overmyer, K. (2001). Ozone-Induced Cell Death. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics