Skip to main content

Understanding the Role of Ozone Stress in Altering Belowground Processes

  • Chapter
Trends in European Forest Tree Physiology Research

Part of the book series: Tree Physiology ((TREE,volume 2))

Abstract

Forested ecosystems are comprised of tremendous biological diversity and functional complexity both above and belowground. Soil ecosystems are known to contain thousands of species, with many more that have not yet been identified. Soil heterotrophic organisms depend on green plants for their energy, while autotrophs depend on soil heterotrophs for processing and cycling nutrients that are needed for continued growth. Together, heterotrophs and autotrophs form a complex web of interacting entities, the balance of which is always changing as ecosystems change in response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams M.B. and O’Neill E.G. Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus taeda L. Seedlings. For. Sci. 37 (1), 5–16, 1991.

    Google Scholar 

  • Andersen C.P. Ozone stress and changes below-ground: linking root and soil processes. Phyton 40, 1–12, 2000.

    Google Scholar 

  • Andersen C.P., Hogsett W.E., Wessling R. and Piocher M. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure. Can. J. For. Res. 21, 1288–1291, 1991.

    Article  CAS  Google Scholar 

  • Andersen C.P., Laurence J.A. and Hogsett W.E. To what extent to mycorrhizae need to be considered in process modelling efforts?. Poster presentation, The North American Forest Biology Workshop, Sault Ste. Marie, Canada, Aug. 17–20, 1992.

    Google Scholar 

  • Andersen C.P. and Scagel C.F. Nutrient availability alters below-ground respiration of ozone exposed ponderosa pine. Tree Physiol. 17, 377–387, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Andersen C.P., Wilson R., Piocher M. and Hogsett W.E. Carry-over effects of ozone on ponderosa pine root growth and carbohydrate concentrations. Tree Physiol. 17, 805–81, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Andersen C.P. and Rygiewicz P.T. Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ. Pollut. 73, 217–244, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Andersen C.P. and Rygiewicz P.T. Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. New Phytol. 131, 471–480, 1995.

    Article  CAS  Google Scholar 

  • Blum U. and Tingey D.T. A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos. Environ. 11, 737–739, 1977.

    Google Scholar 

  • Brady N.C. The Nature and Properties of Soils. 8th Edition, MacMillan Publishing Co., Inc., New York, 639 pp., 1974.

    Google Scholar 

  • Cooley D.R and Manning W.J. The impact of ozone on assimilate partition in plants: A review. Environ. Pollut. 47, 95–113, 1987.

    Article  CAS  Google Scholar 

  • Constable J.V.H. and Taylor Jr. G.E. Modeling the effects of elevated tropospheric O on two varieties of Pinus ponderosa. Can. J. For. Res. 27, 527–537, 1997.

    Article  CAS  Google Scholar 

  • Diaz S., Grime J.P., Harris J. and McPherson E. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364, 616–617, 1993.

    Article  CAS  Google Scholar 

  • Edwards G.S. and Kelly J.M. Ectomycorrhizal colonization of loblolly pine seedlings during three growing seasons in response to ozone, acidic precipitation, and soil Mg status. Environ. Pollut. 76, 71–77, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Edwards N.T. Root and soil respiration responses to ozone in Pinus taeda L. Seedlings. New Phytol. 118, 315–321, 1991.

    Article  CAS  Google Scholar 

  • Fenn M. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains. For. Sci. 37 (4), 1163–1181, 1991.

    Google Scholar 

  • Fenn M.E. and Dunn P.H. Litter decomposition across an air-pollution gradient in the San Bernardino Mountains. Soil Sci. Soc. Am. J. 53, 1560–1567, 1989.

    Article  Google Scholar 

  • Findlay S. and Jones C.G. Exposure of cottonwood plants to ozone alters subsequent leaf decomposition. Oecologia 82, 248–250, 1990.

    Article  Google Scholar 

  • Findlay S., Carreiro M., Krischik V. and Jones C.G. Effects of damage to living plants on leaf litter quality. Ecol. Appl. 6 (1), 269–275, 1996.

    Article  Google Scholar 

  • Gorissen A. and Van Veen J.A. Temporary disturbance of translocatoin of assimilates in Douglas-fir caused by low levels of ozone and sulfur dioxide. Plant Physiol. 88, 559–563, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Gorissen A., Joosten N.A., Smeulders S.M. and Van Veen J.A. Effects of short-term ozone exposure and soil water availability on the carbon economy of juvenile Douglas-fir. Tree Physiol. 14, 647657, 1994.

    Google Scholar 

  • Grulke N.E., Andersen C.P., Fenn M.E. and Miller P.R. Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California. Environ. Pollut. 103, 63–73, 1998.

    Article  CAS  Google Scholar 

  • Hogsett W.E., Plocher M., Wildman V., Tingey D.T. and Bennett J.P. Growth response of two varieties of slash pine seedlings to chronic ozone exposures. Can. J. Bot. 63, 2369–2376, 1985.

    Article  CAS  Google Scholar 

  • Kelting D.L., Burger J.A. and Edwards G.S. The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.). For. Ecol. Manage. 79, 197–206, 1995.

    Article  Google Scholar 

  • Law B.E., Ryan M.G. and Anthoni P.M. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol. 5, 169–182, 1999.

    Article  Google Scholar 

  • Lippert M., Häberle K.H., Steiner K., Payer H.D. and Rehfuess K.E. Interactive effects of elevated CO and O on photosynthesis and biomass production of clonal 5-year-old Norway spruce (Picea ables (L.) Karst.) under different nitrogen nutrition and irrigation treatments. Trees 10, 382–392, 1996.

    Google Scholar 

  • Manning W.J., Feder W.A., Papia P.N. and Perkins I. Influence of foliar ozone injury on root development and root surface fungi of pinto bean plants. Environ. Pollut. 1, 305–312, 1971.

    Article  Google Scholar 

  • Marshall J.D. and Waring R.H. Predicting fine root production and turnover by monitoring root starch and soil temperature. Can. J For. Res. 15, 791–800, 1985.

    Article  Google Scholar 

  • Matyssek R., Günthardt-Goerg M.S., Landolt W. and Keller T. Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus x euramericana). Environ. Pollut. 81, 207–21, 1993.

    Article  PubMed  CAS  Google Scholar 

  • McCool P.M. and Menge J.A. Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress. New Phytol. 94, 241–247, 1983.

    Article  CAS  Google Scholar 

  • McCrady J.K. and Andersen C.P. The effect of ozone on below-ground carbon allocation in wheat. Environ. Pollut. 107, 465–472, 2000.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S.B. and McConathy R.K. Effects of SO and O on allocation of 14C-labelled photosynthate in Phaseolus vulgaris. Plant Physiol. 7, 630–6i5, 1983.

    Google Scholar 

  • Moore J.C, DeRuiter P.C., and Hunt H.W. Soil invertebrate/micro-invertebrate interactions: disproportionate effects of species on food web structure and function. Veterinary Parasitology 48, 247–260, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Naeem S., Thompson L.J,. Lawler S.P., Lawton J.H. and Woodfin R.M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737, 1994.

    Article  Google Scholar 

  • O’Neill E.G., O’Neill R.V. and Norby R.J. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ. Pollut. 73, 271–284, 1991.

    Article  PubMed  Google Scholar 

  • Pääkkönen E. and Holopainen T. Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol. 129, 595–603, 1995.

    Article  Google Scholar 

  • Patterson M.T. and Rundel P.W. Stand characteristics of ozone-stressed populations of Pinus jeffreyi (Pinaceae): Extent, development, and physiological consequences of visible injury. Am. J Bot. 82, 150–158, 1995.

    Article  CAS  Google Scholar 

  • Pimm S.L. and Lawton J.H. Number of trophic levels in ecological communities. Nature 268, 329331, 1977.

    Google Scholar 

  • Pimm S.L. Food Webs. Chapman and Hall, London, 219 pp., 1982.

    Google Scholar 

  • Reddy G.B., Reinert R.A. and Eason G. Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain. Soil Biol. Biochem. 23 (12), 11115–1119, 1991.

    Article  Google Scholar 

  • Reich P.B., Schoettle A.W., Stroo H.W., Troiano J. and Amundson R.G. Effects of O, SO, and acidic rain on mycorrhizal infection in northern red oak seedlings. Can. J. Bot. 63, 1049-’2055, 1985.

    Google Scholar 

  • Rennenberg H., Herschbach C. and Polk A. Consequences of air pollution on shoot-root interactions. J. Plant Physiol. 148, 296–301, 1996.

    Article  CAS  Google Scholar 

  • Retzlaff W.A., Weinstein D.A., Laurence J.A. and Gollands B. Simulated root dynamics of a 160year-old sugar maple (Acer saccharum Marsh.) tree with and without ozone exposure using the TREGRO model. Tree Physiol. 16, 915–92, 1996.

    Article  PubMed  Google Scholar 

  • Retzlaff W.A., Arthur M.A., Grulke N.E., Weinstein D.A. and Gollands B. Use of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree. Tree Physiol. 20, 195–202, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rygiewicz P.T. and Andersen C.P. Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369, 58–60, 1994.

    Article  Google Scholar 

  • Scagel C.F. and Andersen C.P. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. New Phytol. 136, 627–64, 1997.

    Article  CAS  Google Scholar 

  • Shafer S.R. Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of Sorghum. Environ. Pollut. 51, 131–152, 1988.

    Article  CAS  Google Scholar 

  • Simmons G.L. and Kelly J.M. Influence of O, rainfall acidity, and soil Mg status on growth and ectomycorrhizal colonization of loblolly pine roots. Water, Air, Soil Pollut. 44, 159–171, 1989.

    Article  CAS  Google Scholar 

  • Spence R.D., Rykiel Jr. E.J. and Sharpe P.J.H. Ozone alters carbon allocation in loblolly pine: Assessment with carbon-11 labeling. Environ. Pollut. 64, 93–106, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Stow T.K., Allen H.L., and Kress L.W. Ozone impacts on seasonal foliage dynamics of young loblolly pine. For. Sci. 38, 102–119, 1992.

    Google Scholar 

  • Stroo H.F,. Reich P.B. Schoettle A.W. and Amundson R.W. Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. Can. J. Bot. 66, 1510–1516, 1988.

    Article  CAS  Google Scholar 

  • Temple P.J,. Riechers G.H., and Miller P.R. Foliar injury responses of ponderosa pine seedlings to ozone, wet and dry acidic deposition, and drought. Environ. Exper. Bot. 32 101–113, 1992.

    Google Scholar 

  • Tingey D.T,. Wilhour R.G., and Standley C. The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings. For. Sci. 22, 234–241, 1976.

    CAS  Google Scholar 

  • Turner N.C,. Rich S., and Waggoner P.E. Removal of ozone by soil. J. Environ. Qual. 2: 259–264, 1973.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. Air Quality Criteria for Ozone and related Photochemical Documents, Vol. II. EPA/600/P-93/004bî Washington, D.C.,1996.

    Google Scholar 

  • Van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A. and Sanders I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72, 1998.

    Article  Google Scholar 

  • Weber J.A., Tingey D.T. and Andersen C.P. Plant response to air pollution In Plant Response Mechanisms to the Environment, R.E. Wilkinson ed. Marcel Dekker, Inc., New York, pp. 357389, 1994.

    Google Scholar 

  • Weinstein D.A., Beloin R.M. and Yanai R.D. Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stress. Tree Physiol. 9: 127–146, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein D.A., Samuelson L.J and Arthur M.A. Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling. Environ. Pollut. 102, 307–320, 1998.

    Article  CAS  Google Scholar 

  • Wullschleger S.D., Lynch J.P. and Bernston G.M. Modeling the belowground response of plants and soil biota to edaphic and climatic change- What can we expect to gain? Plant Soil 165, 149–160, 1994.

    Article  CAS  Google Scholar 

  • Yun S.C., Park E.W. and Laurence J.A. Simulation of 1-year-old Populus tremuloides response to ozone stress at Ithaca, USA, and Suwon, Republic of Korea. Environ. Pollut. 111, 1–8, 2000.

    Google Scholar 

  • Zak D.R., Tilman D., Parmenter R.R,. Rice C.W., Fisher F.M,. Vose J., Milchunas D. and Martin C.W. Plant production and soil microorganisms in late-successional ecosystems: A continental-scale study. Ecology 75: 2333–2347, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersen, C.P. (2001). Understanding the Role of Ozone Stress in Altering Belowground Processes. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics