Skip to main content

The Influence of the Environment during Sexual Reproduction on Adaptations of Conifers along Latitudinal and Altitudinal Gradients

  • Chapter
Book cover Trends in European Forest Tree Physiology Research

Part of the book series: Tree Physiology ((TREE,volume 2))

Abstract

Climatic adaptation seems to be the most important component in the evolutionary process of boreal forest tree species. Recent evidence has been accumulating that this process may be less clear-cut than earlier assumed. In Picea abies, several independent tests have shown that the climate and weather conditions during sexual reproduction influence the adaptive properties of the progenies. The phenomenon is expressed in Norway spruce seed orchards established by moving parent trees, propagated as grafts, from north to south, from high to low elevation, or from outdoor to indoor greenhouse conditions. The progenies exhibit a changed phenology and a delayed development of frost hardiness in the autumn compared to their siblings reproduced in a colder environment. Observations on seedlings from seeds harvested in northern stands of provenances transferred from the south to the north, show that they have tuned their photoperiodic responses towards that the of the local provenances. Results with other conifer species indicate that they express similar effects. A possible explanation for the phenomenon is the existence of a regulatory mechanism, sensing the changes in temperature and/or photoperiod at some stages during the reproductive process in the female flower, and then modifying the expression of genes controlling adaptive traits in the progeny. Regardless of the type of mechanisms involved, these observations have changed our understanding of ecotype formation in Norway spruce, and given us some ideas why this species express strong clinal variation in combination with a large within population variation for the same adaptive traits. The maternal influence will often alter the phenotypic performance of the progenies in the ssame direction as natural selection. It may be one of the reasons why some conifer species under conditions seem so highly adaptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, S.N., & Adams, W.T., 1997. Spring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var menziesii. Canadian Journal of Forest Research 27: 1773–1780.

    Article  Google Scholar 

  • Aitken, S.N., Adams, W.T., Schermann, N. & Fuchigami, L.H., 1996. Family variation for fall cold hardiness in two Washington populations of coastal Douglas-fir (Pseudtsuga menziesii var. menziesii (Mirb.) Franco). Forest Ecology and Management 80: 187–195.

    Article  Google Scholar 

  • Andersson, B., 1994. After-effect of maternal environment on autumn frost hardiness in Pinus sylvestris seedlings in relation to cultivation techniques. Tree Physiology 14: 13–322.

    Article  Google Scholar 

  • Bigras, F. & Bonlieu, J., 1997. Influence of maternal environment on frost tolerance of Picea glauca progenies. In: Proceedings of the twenty-sixth meeting of the Canadian Tree Improvement Association, Part 2, 91.

    Google Scholar 

  • Campbell, R. K., Pawuk, W.A. & Harris, A.S., 1989. Microgeographic genetic variation of Sitka spruce in southeastern Alaska. Canadian Journal of Forest Research 19: 1004–1013.

    Article  Google Scholar 

  • Clapham, D., Ekberg, I., Little, C.H.A., & Savolainen, O. 2001. Molecular biology of conifer frost tolerance and potential applications to tree breeding. In: Brigas, F.J. & Colombo, Si.,. (eds.). Conifer cold hardiness. Kluwer Academic Publishers, Dordrecht, The Netherlands. 187–219.

    Chapter  Google Scholar 

  • Dietrichson, J., 1993. Climatic change and Norway spruce breeding. In: Rone, V., (ed.) Norway spruce provenances and breeding. Proceeding of the IUFRO S.2.2.-11 symposium, Latvia, Riga. 157–170.

    Google Scholar 

  • Dobzhansky, T., 1956. What is an adaptive trait? American Naturalist 90: 337–347.

    Article  Google Scholar 

  • Dobzhansky, T., 1968a. On some fundamental concepts of Darwinian biology. Evolutionary Biology 2: 1–34.

    Article  Google Scholar 

  • Dobzhansky, T., 1968b. Adaptedness and fitness. In: Lewontin, R.C., (ed). Population Biology and Evolution. Syracuse University Press. 109–121.

    Google Scholar 

  • Donohue, K. & Schmitt, J., 1998. Maternal environmental effects in plants. Adaptive plasticity? In: Mousseau, T.A. & Fox, C.W., (eds). Maternal effects as adaptations. Oxford University Press, New York, Oxford, 137–158.

    Google Scholar 

  • Dormling, I. & Johnsen, O., 1992. Effects of the parental environment on full-sib families of Pinus sylvestris. Canadian Journal of Forest Research 22: 88–100.

    Article  Google Scholar 

  • Dæhlen, A.G., Johnsen, O. & Kohmann, K., 1995. Autumn frost hardiness in young seedlings of Norway spruce from Norwegian provenances and seed orchards. (Norwegian with English summary). Research paper ofSkogforsk 1/95: 1–24.

    Google Scholar 

  • Edvardsen, O.M., Johnsen, O. & Dietrichson, J., 1996. Growth rhythm and frost hardiness in northern progeny trials with plants from Lyngdal seed orchard. (Norwegian with English summary). Research paper ofSkogForsk 9/96: 1–9.

    Google Scholar 

  • Ennos, R., Worrell, R. & Malcolm, D.C., 1998. The genetic management of native species in Scotland. Forestry 71: 1–23.

    Article  Google Scholar 

  • Eriksson, G., 1998a. Evolutionary forces influencing variation among populations of Pinus sylvestris. Silva Fennica 32: 173–184.

    Google Scholar 

  • Eriksson, G., 1998b. Sampling for genetic resources populations in the absence of genetic knowledge. In Turok, J., Collin, E., Demesure, B., Eriksson, G., Kleinschmit, J., Rusanen, M. & Stephan R. (compilers): Noble Hardwood Network. Report of the second meeting, 22–25 March 1997. Lourizàn, Spain. International Plant Genetic Resources Institute, Rome, Italy. 61–75.

    Google Scholar 

  • Eriksson, M. E. 2000. The role of phytochrome A and gibberellins in growth under long and short day conditions. Studies in hybrid aspen. Doctor’s dissertation. Acta Universitatis Agriculturae Sueciae. Silvestria 164. ISBN 91–576–5898–6.

    Google Scholar 

  • Fagard, M. & Vaucheret, H. 2000. (Trans)gene silencing in plants: How many mechanisms? Annu. Rev. Plant Physiol. Mol. Biol. 51: 167–194.

    Google Scholar 

  • Greenwood, M.S. & Hutchison, K.W., 1996. Genetic aftereffetcs of increased temperature in Larix. In: Hom, J., Birdsey, R. & O’Brian, K., (eds.) Proceedings 1995 meeting of the Northern Global Change Program 14–16 March 1995, 56–62.

    Google Scholar 

  • Hannerz, M., 1998. Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers–a review and annotated bibliography. SkogForsk Report 2: 1–140

    Google Scholar 

  • Heide, O.M., 1985. Physiological aspects of climatic adaptation in plants with special reference to high-latitude environments. In: Kaurin, A., Junttila, O. & Nilsen. J., (eds.). Plant production in the north. Norwegian University Press, Tromso, 1–22.

    Google Scholar 

  • Hurme. P., Repo, T., Savolainen, O., Pääkkönen, T., 1997. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research 27: 716–723.

    Google Scholar 

  • Hänninen, H., Beuker, E., Johnsen, O., Leinonen, I., Murray, M., Sheppard, L. & Skroppa, T., 2001. Impacts of climate change on cold hardiness. In: Brigas, F.J. & Colombo, S.J., (eds.). Conifer cold hardiness. Kluwer Academic Publishers, Dordrecht, The Netherlands. 305–333.

    Chapter  Google Scholar 

  • Johnsen, Ø., 1989. Freeze-testing young Picea abies plants. A methodological study. Scandinavian Journal of Forest Research 4: 351–367.

    Article  Google Scholar 

  • Johnsen, Ø. & Apeland, I., 1988. Screening early autumn frost hardiness among progenies from Norway spruce seed orchards. Silva Fennica 22: 203–212.

    Google Scholar 

  • Johnsen, Ø. & Ostreng, G., 1994. Effects of plus tree selection and seed orchard environment on progenies of Picea abies. Canadian Journal of Forest Research 24: 32–38.

    Article  Google Scholar 

  • Johnsen, Ø. & Skroppa, T., 1996. Adaptive properties of Picea abies progenies are influenced by environmental signals during sexual reproduction. Euphytica 92: 67–71.

    Article  Google Scholar 

  • Johnsen, Ø & Skroppa, T., 1997. Parents of Norway spruce adjust the performance of their progeny according to changes in climate and weather conditions during female flowering. A review. In: Mohren, G.M.J., Kramer, K. & Sabaté, S., (eds.). Impacts of Global Change on Tree Physiology and Forest Ecosystems, Kluwer Academic Publisher, Dordrecht, Boston, London, 159–163.

    Chapter  Google Scholar 

  • Johnsen, Ø. & Skreppa, T., 2000. Provenances and families show different patterns of relationship between bud-set and frost hardiness in Picea abies. Can J. For. Res. 30: 1858–1866.

    Article  Google Scholar 

  • Johnsen, Ø., Dietrichson, J. & Skaret, G., 1989. Phenotypic changes in progenies of northern clones of Picea abies (L.) Karst. grown in a southern seed orchard. III. Climatic damage in a progeny trial. Scandinavian Journal of Forest Research 4: 343–350.

    Article  Google Scholar 

  • Johnsen, Ø., Skreppa, T., Haug, G., Apeland, I. & Ostreng, G., 1995. Sexual reproduction in a greenhouse and reduced autumn frost hardiness of Picea abies progenies. Tree Physiology 15: 551–555.

    Article  PubMed  Google Scholar 

  • Johnsen, Ø., Skreppa, T., Junttila, O. & Dæhlen, O.G., 1996. Influence of the female flowering environment on autumn frost-hardiness of Picea abies progenies. Theoretical and Applied Genetics 92: 797–802.

    Article  Google Scholar 

  • Kleinschmit, J., Racz, J., Weissgerber, H., Dietze, W., Dieterich, H. & Dimpflmeier, R., 1974. Ergebnisse aus dem internationalen Douglasien-herkunftversuch von 1970 in der Bundesrepublik Deutschland. Silvae Genetica 23: 167–176.

    Google Scholar 

  • Kohmann, K., 1996. Night length reactions of Norway spruce plants of different provenances and seed orchards. (Norwegian with English summary). Research report of Skogforsk 15/96: 1–15.

    Google Scholar 

  • Kohmann. K. & Johnsen, Ø., 1994. The timing of bud-set in seedlings of Picea abies from seed crops of a cool versus a warm summer. Silvae Genetica 43: 328–332.

    Google Scholar 

  • Kullmann, L., 1995. New and firm evidence for Mid-Holocene appearance of Picea abies in the Scandes Mountains, Sweden. Journal of Ecology 83: 439–447.

    Article  Google Scholar 

  • Langlet, O., 1936. Studier över tallens fysiologiska variabilitet och dess samband med klimatet. Meddelanden frein Statens Skogforsöksanstalt 29: 219–470.

    Google Scholar 

  • Levitt, J., 1980. Responses of plants to environmental stresses. Chilling, freezing, and high temperature stresses. Academic Press, New York.

    Google Scholar 

  • Lindgren, D. & Wang, Q., 1986. Are genetic results influenced by the environment during seed maturation? In: Proceedings of the IUFRO Conference on Breeding Theory, Progeny Testing and Seed Orchards. Williamsburg, Virginia, USA, 192–199.

    Google Scholar 

  • Lindgren, D. & Wei R-P., 1994. Effects of maternal environment on mortality and growth in young Pinus sylvestris in field trials. Tree Physiology 14: 323–327.

    Article  PubMed  Google Scholar 

  • Mâtyâs, C., 1996. Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92: 45–54.

    Article  Google Scholar 

  • Matzke, M. & Matzke, A. J. M., 1993. Genomic imprinting in plants: Parental effects and transinactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology 44: 53–76.

    Article  CAS  Google Scholar 

  • Meyer, P., Linn, F., Heidmann, I., Meyer, Z.A.H., Niedenhof, I. & Saedler H. 1992. Endogenous and environmental factors influence 35s promoter methylation of maize al -gene contruct in transgenic petunia and its colour phenotype. Molecular & General Genetics 231: 345–352.

    Article  CAS  Google Scholar 

  • Michaels, S.D. & Amasino, R.M. 1999. Invited Review: Memories of winter: vernalization and the competence to flower. Plant Cell and Environment 23: 1145–1153.

    Article  Google Scholar 

  • Moe, D., 1970. The post-glacial immigration of Picea abies into Fennoscandia. Botaniske Notiser 123: 61–66.

    Google Scholar 

  • Nielsen, U. B., 1994. Genetic variation in Sitka Spruce (Picea sitchensis (Bong.) Carr.) with respect to height growth, stem form and frost hardiness–investigated on the basis of Danish provenance, progeny and clonal field experiments. (Danish with Eng. summary). Forskingsserien. Danish Landscape and Forest Research Institute, Hersholm, Denmark. No 11: 1–330.

    CAS  Google Scholar 

  • Nielsen, U. B., 1999. Comparison of Danish first generation or later seed sources with direct imports - Examples from Sitka spruce, Nordmanns fir and Noble fir. Aktuelt fra skogforskningen 3/99: 11.

    Google Scholar 

  • Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martiniunssen, I., Olsson, O., Sandberg, G. & Moritz, T., 1997. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant Journal 12: 1339–1350.

    Article  CAS  Google Scholar 

  • Owens, J. N., & Blake, M.D., 1985. Forest tree seed production. Information Report PI-X-53 Petawawa National Forestry Institute, Chalk River, Ontario.

    Google Scholar 

  • Rehfeldt, G.E., 1979. Ecological adaptations in Douglas-Fir (Pseudotsuga menziesii var. glauca) populations. Heredity 43: 383–397.

    Article  Google Scholar 

  • Rehfeldt, G. E., 1988. Ecological genetics of Pinus contorta from the Rocky Mountains (USA): a synthesis. Silvae Genetica 37: 131–135.

    Google Scholar 

  • Rehfeldt, G.E., 1989. Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var glauca): a synthesis. Forest Ecology and Management 28: 202–215.

    Article  Google Scholar 

  • Rehfeldt, G.E., 1995. Genetic variation, climate models and the ecological genetics of Larix occidentalis. Forest Ecology and Management 78: 21–37.

    Article  Google Scholar 

  • Rehfeldt, G.E., Ying, C.C., Spittlehouse, D.L. & Hamilton D.A.Jr., 1999. Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecological Monographs 69: 375–407.

    Google Scholar 

  • Rehfeldt, G.E., 2000. Genes, climate and wood. The Lesilie L. Schaffer Lectureship in Forest Science, Wednesday, February 2, 2000. UBC, Vancouver B.C. Canada. 15 pp.

    Google Scholar 

  • Savolainen, O., 1997. Pines beyond the polar circle. In Tigerstedt, P.M.A. (ed.): Adaptation in plant breeding. Kluwer Academic Publishers. 153–159.

    Google Scholar 

  • Schmidt-Vogt, H., 1977. Die Fichte. Band I. Taxonomie - Verbreitung - Morphologie - Ökologie - Waldgensellschaften. Verlag Paul Parey, Hamburg and Berlin.

    Google Scholar 

  • Schwartz, M., 1991. Potential effects of global climate change on the biodiversity of plants. Forestry Chronicle 68: 462–471.

    Google Scholar 

  • Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. & Dennis, E.S. 1999. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell 11: 445–458.

    PubMed  CAS  Google Scholar 

  • Sheldon, C.C., Rouse, D. T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. 2000. The molecular basis of vernalization: The central role of FLOWERIN LOCUS C (FLC). PNAS 97 (6): 3753–3758.

    Article  PubMed  CAS  Google Scholar 

  • Skrøppa, T., 1991. Within-population variation in autumn frost hardiness and its relationships to bud-set and height growth in Picea abies. Scandinavian Journal of Forest Research 6: 353–363.

    Article  Google Scholar 

  • Skrøppa, T. & Kohmann, K., 1997. Adaptation to local conditions after one generation in Norway spruce. Forest Genetics 4: 171–177.

    Google Scholar 

  • Skrøppa, T. & Johnsen, O., 2000. Patterns of adaptive genetic variation in forest tree species; the reproductive environment as an evolutionary force in Picea abies. In Mâtyds, C., (ed.). Forest Genetics and Sustainability. Kluwer Academic Publications, 49–58.

    Google Scholar 

  • Skrøppa, T., Nikkanen, T., Routsalainen, S. & Johnsen, O., 1994. Effects of sexual reproduction at different latitudes on performance of the progeny of Picea abies. Silvae Genetica 43: 297–303.

    Google Scholar 

  • Stoehr, M.U., L’Hirondelle, S.J., Binder, W,D. & Webber, J.E., 1998. Parental environmental aftereffects on germination, growth and adaptive traits in selected white spruce families. Canadian Journal of Forest Research 28: 418–426.

    Google Scholar 

  • Turesson, G., 1922. The geographical response of the plant species to the habitat. Hereditas 3: 211–350.

    Article  Google Scholar 

  • Turesson, G., 1925. The plant species in relation to habitat and climate. Contribution to the knowledge of genecological units. Hereditas 6: 146–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnsen, Ø., Skrøppa, T. (2001). The Influence of the Environment during Sexual Reproduction on Adaptations of Conifers along Latitudinal and Altitudinal Gradients. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics