Skip to main content
  • 209 Accesses

Abstract

The homogenization method for solution of the heat conduction problem is presented below in the context the Boundary Element Method. The approach is introduced for the fiber-reinforced composite with deterministically and randomly defined material properties. Computational implementation of the method can find the application for the composites with random interfaces where application of the Finite Element Method is very complicated. Numerical illustration shows deterministic and probabilistic sensitivity of effective composite heat conductivity with respect to fiber volume ratio and randomness level of composite constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brebbia, CA., Dominguez, J.: Boundary Elements. An Introductory Course. Comp. Mech. Publ., 1996.

    Google Scholar 

  2. Breitung, K., Casciati, F. and Faravelli, L.: A stochastic boundary element model for soil properties. Proc. of IUTAM/IABEM BEM Symp., pp. 10–11, Cracow 1999.

    Google Scholar 

  3. Burczynski, T.: Boundary Element Method in Structural Mechanics (in Polish). WNT, Warsaw, 1995.

    Google Scholar 

  4. Duddeck F.M.E.: A boundary element method for general media via Parseval’s theorem (in preparation).

    Google Scholar 

  5. Furmanski, P.: Heat conduction in composites: homogenization and macroscopic behaviour, Appl. Mech. Rev. 50(6) (1997), 327–355.

    Article  Google Scholar 

  6. Ghanem, R.G. and Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, 1991.

    Book  MATH  Google Scholar 

  7. Hassani, B. and Hinton, E.: A review of homogenization and topology optimization: I- homogenization theory for media with periodic structure. Comput. & Struct. 69 (1998), 707–717;

    Article  MATH  Google Scholar 

  8. Hassani, B. and Hinton, E.: A review of homogenization and topology optimization: II — analytical and numerical solution of homogenization equations. Comput. & Struct. 69 (1998), 719–738;

    Article  Google Scholar 

  9. Hassani, B. and Hinton, E.: A review of homogenization and topology optimization: III — topology optimization using optimality criteria. Comput. & Struct. 69 (1998), 739–756.

    Article  Google Scholar 

  10. Haug, E.J., Choi, K.K. and Komkov, V.: Design Sensitivity Analysis of Structural Systems. Series Math. Sci. Engrg., Academic Press, 1986.

    MATH  Google Scholar 

  11. Hurtado, J.E. and Barbat, A.H.: Monte-Carlo techniques in computational stochastic mechanics. Arch. Comput. Meth. Engrg. 5(1) (1998), 3–30.

    Article  MathSciNet  Google Scholar 

  12. Kaminski, M.: Boundary element method homogenization of linear elastic composites. Engrg. Anal. Boundary Elem. 23(10): 815–823, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaminski, M.: Homogenized properties of n-components composite materials. Int. J. Engrg. Sci. 38(4): 405–427, 2000.

    Article  MathSciNet  Google Scholar 

  14. Kaminski, M.: Stochastic second-order BEM perturbation formulation. Engrg. Anal. Boundary Elem. 23 (1999), 123–129.

    Article  MATH  Google Scholar 

  15. Kleiber, M. and Hien, T.D.: The Stochastic Finite Element Method. Wiley, 1992.

    MATH  Google Scholar 

  16. Manolis, G.D. and Shaw, R.P.: Boundary integral formulation for 2D and 3D thermal problems exhibiting a linearly varying stochastic conductivity. Comput. Mech. 17(1996), 406–417.

    Article  MATH  Google Scholar 

  17. Panagiotopoulos, P.D., Panagouli, O.K. and Koltsakis, E.K.: The BEM in place bodies with cracks and/or boundaries of fractal geometry. Comput. Mech. 15 (1995), 350–363.

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, X.Q. et al.: A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending. Comput. Mech. 21 (1998), 253–261

    Article  MATH  Google Scholar 

  19. Shaw, R.P. et al.: The 2D free space Green’s function and BEE for a Poisson equation with linearly varying conductivity in two directions. In: Ertekin R.C. et al., eds., Proc. of BETECH 11, pp. 327–332, Comput. Mech. Publ., 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kaminski, M. (2001). Boundary Element Method, Homogenization and Heat Conduction in Composite Materials. In: Burczynski, T. (eds) IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9793-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9793-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5737-2

  • Online ISBN: 978-94-015-9793-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics