Skip to main content

Part of the book series: Springer Handbook Series of Plant Ecophysiology ((KLEC,volume 1))

Abstract

Some of the most serious and universal challenges faced by plants come from pathogenic microorganisms. These represent highly diverse types of organisms ranging from viruses, bacteria, Oomycetes, protozoa and fungi sensu stricto (ascomycetes, basidiomycetes), see Agrios (1997), for an overview. In addition, aphids and nematodes often induce similar responses in the plant as microorganisms. Plants have responded to this onslaught by evolving a plethora of defence mechanisms. These represent visible physical attributes and inducible alterations in the structure of exposed organs and tissues as well as the more cryptic production of chemicals and proteins which can damage or inhibit the development of the pathogen (see table 1). The defence mechanisms can be induced following the perception of the pathogen, and/or constitutively present in the host (figure 1). Recent advances in molecular techniques have led to an increased understanding of the regulation of the defence mechanisms and the role of different signal transduction pathways in their regulation. The knowledge gained has also led to the demonstration that manipulation (addition, alteration in regulation or removal by antisense technology) of a single defence factor in a plant can alter the outcome of the interaction, for example, resulting in reduced levels of infection by a pathogen (see Cornelissen and Schram, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J. and Parker. J.E. 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306–10311.

    Article  CAS  Google Scholar 

  • Agrios, G. N. 1997. Plant Pathology. Academic Press, San Diego, Calif.

    Google Scholar 

  • Aist, J. R. and Bushnell. W. R. 1991. “Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance”. In: The Fungal spore and disease initiation in plants and animals. eds. G.T. Cole and H.C. Hoch, pp. 321–343. Plenum Press, New York.

    Chapter  Google Scholar 

  • Alfano, J. R. and Collmer, A. 1996. Bacterial pathogenicity in plants: life up against the wall. Plant Cell 8, 1683–1698.

    PubMed  CAS  Google Scholar 

  • Antoniw, J.F., Ritter, C.E.,. Pierpoint, W.S, and van Loon, L.C. 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen.Virol. 47, 79–87.

    CAS  Google Scholar 

  • Atkinson, M.M. and Baker, C.J. 1987. Alteration of plasmalemma sucrose transport in Phaseolus vulgaris by Pseudomonas syringae pv syringae and its association with K’/H’ exchange. Phytopathology 77, 1573–1578.

    Article  CAS  Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B. and Dinesh-Kumar, S.P. 1997. Signaling in plant-microbe interactions. Science 276, 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Blount, J.W., Korth, K.L., Masoud, S.A., Rasmussen, S., Lamb, C. and Dixon, R.A. 2000. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol. 122, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Bolwell, G.P. 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol. 2, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S.A., Clarke, J.D., Liu, Y.D., Klessig, D.F., and Dong, X.N. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and. NPR1-independent resistance. Plant Cell 9, 1573–1584.

    PubMed  CAS  Google Scholar 

  • Bowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J. and Osboum, A.E. 1995. Host-range of a plant-pathogenic fungus determined by a saponin detoxifying enzyme. Science 267, 37 1374.

    Google Scholar 

  • Brandt, J., Thordal-Christensen, H., Vad, K., Gregersen, P.L. and Collinge, D.B. 1992. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant Journal 2, 815–820.

    PubMed  CAS  Google Scholar 

  • Brent, R. and Finley, R.L. 1997. Understanding gene and allele function with two-hybrid methods. Ann. Rev. Genet. 31, 663–704.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W.F., Terras, F.R.G. and Cammue, B.P.A. 2000. “Induced and Preformed Antimicrobial Proteins”. In: Mechanisms of Resistance to Plant Diseases. eds. A.J. Slusarenko, R.S.S. Fraser, and L.C. van Loon, pp. 371–477. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Brown, I., Mansfield, J. Irlam, I. Conrads-Strauch, J. and Bonas, U. 1993. Ultrastructure of interactions between Xanthomonas campestris pv vesicatoria and pepper, including immunocytochemical localization of extracellular polysaccharides and the AvrBs3 protein. Mol. Plant Microbe Interact. 6, 376–386.

    Article  CAS  Google Scholar 

  • Cao, H., Li, X. and Dong, X.N. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95, 6531–6536.

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Langebartels, C., van Montagu, M., Inzé, D., and van Camp, W. 1996. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J. 10, 491–503.

    Article  CAS  Google Scholar 

  • Chandra, S., Heinstein, P.F. and Low, P.S. 1996. Activation of phospholipase A by plant defense elicitors. Plant Physiol. 110, 979–986.

    PubMed  CAS  Google Scholar 

  • Chen, Z.Y., Kloek, A.P. Boch, J. Katagiri, F. and Kunkel, B.N. 2000. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol. Plant Microbe Interact. 13, 1312–1321.

    CAS  Google Scholar 

  • Chester, K. 1933. The problem of acquired physiological immunity in plants. Quarterly Review of Biology 8, 275–324.

    Article  Google Scholar 

  • Collinge, D.B., Gregersen, P.L. and Thordal-Christensen, H. 2000. “The nature and role of defence response genes in cereals”. In: The Powdery Mildews: A Comprehensive Treatise. eds. R.R. Belanger and W.R. Bushnell. APS Press, St. Paul, Minnesota, USA.

    Google Scholar 

  • Conrath, U., Silva, H. and Klessig, D.F. 1997. Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco. Plant Journal 11, 747–757.

    Article  CAS  Google Scholar 

  • Cornelissen, B.J.C. and Schram, A. 2000. “Transgenic approaches to control epidemic spread of diseases”. In: Mechanisms of Resistance to Plant Diseases. eds. A.J. Slusarenko, R.S.S. Fraser, and L.C. van Loon, pp. 575–599. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Croft, K.P.C., Voisey, C.R. and Slusarenko, A.J. 1990. Mechanism of hypersensitive cell collapse–correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L) inoculated with an avirulent race of Pseudomonas syringae pv phaseolicola. Physiol. Mol. Plant Path. 36, 49–62.

    Article  CAS  Google Scholar 

  • Dangl, J.L., Dietrich, R.A. and Richberg, M.H. 1996. Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8, 1793–1807.

    PubMed  CAS  Google Scholar 

  • de Wit, P.J. and Joosten, M.H. 1999. Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction. Curr. Opin Microbiol. 2, 368–373.

    Article  PubMed  Google Scholar 

  • Delaney, T.P. 2000. New mutants provide clues into regulation of systemic acquired resistance. Trends Plant Sci. 5, 49–51.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey, D.A., Shah, J. and Klessig, D.F. 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18, 547–575.

    Article  CAS  Google Scholar 

  • Desikan, R., Clarke, A., Atherfold, P., Hancock, J.T., and Neill, S.J. 1999. Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta 210, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A. and Harrison, M.J. 1990. Activation, structure and organization of genes involved in microbial defence of plants. Adv. Genet. 28, 165–234.

    Article  PubMed  CAS  Google Scholar 

  • Du, L. and Chen, Z. X. 2001. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant.1. 24, 837–847.

    Google Scholar 

  • Dumer, J., Shah, J. and Klessig, D.F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266–274.

    Article  Google Scholar 

  • Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D.G. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12, 953–977.

    Google Scholar 

  • Ebel, J. and Cosio, E.G. 1994. Elicitors of plant defense responses. Int. Rev. Cytol. 148, 1–36. Ellis, J., Dodds, P. N. and Pryor, T. 2000a. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284.

    Google Scholar 

  • Ellis, J., Dodds, P.N. and Pryor, T. 2000b. The generation of plant disease resistance gene specificities. Trends Plant Sci. 5, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J.G., Lawrence, G.J., Luck, J.E., and Dodds, P.N. 1999. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506.

    PubMed  CAS  Google Scholar 

  • Feys, B..J. and Parker, J.E. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Finnie, C., Borch, J. and Collinge, D.B. 1999. 14–3–3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40, 545 – 554.

    Google Scholar 

  • Flor, H.H. 1971. Current status of the gene-for-gene concept. Ann. Rev. Phytopath. 9, 275296.

    Google Scholar 

  • Friedrich, L., Vemooij, B., Gaffney, T., Morse, A. and Ryals, J. 1995. Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol. Biol. 29, 959–968.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, D.W. and Rolfe, B.G. 1990. Working models of specific recognition in plant-microbe interactions. Ann. Rev. Phytopath. 28, 365–391.

    Article  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vemooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist, D.G. 1998. Programmed cell death in plant disease: The purpose and promise of cellular suicide. Ann. Rev. Phytopath. 36, 393–414.

    Article  CAS  Google Scholar 

  • Glazebrook, J. and Ausubel, F.M. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91, 8955–8959.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E.E. and Ausubel, F.M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973–982.

    PubMed  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E.E. and. Ausubel, F.M 1997b. Use of Arabidopsis for genetic dissection of plant defense responses. Ann. Rev. Genet. 31, 569.

    Google Scholar 

  • Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R. and Ausubel, F.M. 1997a. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146, 381–392.

    PubMed  CAS  Google Scholar 

  • Goodwin, P.H., Hsiang, T. and Erickson, L. 2000. A comparison of stilbene and chalcone synthases including a new stilbene synthase gene from Vitis riparia cv. Gloire de Montpellier. Plant Sci. 151, 1–8.

    Article  CAS  Google Scholar 

  • Goodwin, T.W. and Mercer, E.I. 1983. Introduction to plant biochemistry. Pergamon, Oxford.

    Google Scholar 

  • Govrin, E.M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751–757.

    Article  CAS  Google Scholar 

  • Grant, J.J. and Loake, G.J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T. 2001. Programmed cell death in plant pathogen interactions. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 525–545.

    Article  Google Scholar 

  • Gregersen, P.L., Thordal-Christensen, H., Forster, H., and Collinge. D.B., 1997. Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f.sp. hordei (syn. Erysiphe graminis f.sp. hordei). Physiol. Mol. Plant Path. 51, 85–97.

    Google Scholar 

  • Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kindl, H., Vomam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stocker, R.H., and Stenzel, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, R. 1999. Phytoalexins: what have we learned after 60 years? Ann. Rev. of Phytopath. 37, 285–306.

    Article  CAS  Google Scholar 

  • Hammond-Kosack, K.E. and Jones, J.D.G. 1997. Plant disease resistance genes. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 575–607.

    Article  CAS  Google Scholar 

  • Heath, M.C. 2000a. Hypersensitive response-related death. Plant Mol. Biol. 44, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Heath, M.C. 2000b. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Herbers, K., Meuwly, P., Frommer, W. B., Metraux, J. P. and Sonnewald, U. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8, 793–803.

    PubMed  CAS  Google Scholar 

  • Ishihara, M., Hasegawa, M., Taira, T. and Toyama, S. 2000. Isolation and antimicrobial activity of feruloyl oligosaccharide ester from pineapple stem residues. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi 47, 23–29.

    Article  CAS  Google Scholar 

  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals Biochem. Pharm. 57, 261–245.

    Article  Google Scholar 

  • Jabs, T., Tschope, M., Coiling, C., Hahlbrock, K., and Scheel, D. 1997. Elicitor-stimulated ion fluxes and 02 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94, 48004805.

    Google Scholar 

  • Jia, Y.L., McAdams, S.A., Bryan, G.T., Hershey, H.P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 404–4014.

    Article  Google Scholar 

  • Jorgensen, J.H. 1994. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 13, 97–119.

    Article  Google Scholar 

  • Kajava, A.V. 1998. Structural Diversity of Leucine-rich Repeat Proteins. J. Mol. Biol. 277, 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N.T. 1971. Hydroxyphaseollin production by soybeans resistant and susceptible to Phytophthora megasperma var. soyae. Physiol. Plant Path. 1, 265–275.

    Article  CAS  Google Scholar 

  • Kjemtrup, S., Nimchuk, Z. and Dangl, J. 2000. Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr. Opin. Microbiol. 3, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Klement, Z. 1963. Rapid detection of the pathogenicity of phytopathogenic Pseudomonas. Nature 199, 300.

    Article  Google Scholar 

  • Klement, Z. 1982. “Hypersensitivity”. In: Phytopathogenic Procaryotes. eds. M.S. Mount and G.S. Lacy, pp. 150–178. Academic Press, New York.

    Google Scholar 

  • Kobe, B. and Deisenhofer, J. 1995. The leucine rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421.

    Article  Google Scholar 

  • Kumar, D. and Klessig, D.F. 2000. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol. Plant Microbe Interact. 13, 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C. 1996. A ligand-receptor mechanism in plant-pathogen recognition. Science 274, 2038–2039.

    Article  CAS  Google Scholar 

  • Lange, J., Xie, Z.-P., Broughton, W.J., Vögeli-Lange, R. and Boller, T. 1999. A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Sci. 142, 133–145.

    Article  CAS  Google Scholar 

  • Lawton, K., Weymann, K. Friedrich, L. Vernooij, B. Uknes, S. and Ryals, J. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant Microbe Interact. 8, 863–870.

    Article  PubMed  CAS  Google Scholar 

  • Leckband, G. and Lorz, H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96, 1004–1012.

    Article  CAS  Google Scholar 

  • Leister, R.T. and Katagiri, F. 2000. A resistance gene product of the nucleotide binding site–leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J. 22, 345–354.

    Article  CAS  Google Scholar 

  • Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R., and Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6, 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.H., S.Q. Mang, and D.F. Klessig. 2000. Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol. Plant Microbe Interact. 13, 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, J.A. 1998. Plant Pathology and Plant Pathogens. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Luck, J.E., Lawrence, G.J., Dodds, P.N., Shepherd, K.W., and Ellis. J.G., 2000. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12, 1367–1377.

    PubMed  CAS  Google Scholar 

  • Malamy, J., Can, J.P., Klessig, D.F. and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  • Mansfield, J.W. 2000. “Antimicrobial compounds and resistance. the role of phytoalexins and phytoanticipins”. In: Mechanisms of Resistance to Plant Diseases. eds. A.J. Slusarenko, R.S.S. Fraser, and L.C. van Loon, pp. 325–370. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Martin, G.B. 1999. Functional analysis of plant disease resistance genes and their downstream effectors. Curr. Opin. Plant Biol. 2, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani, B. and Slusarenko, A.J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203–212.

    CAS  Google Scholar 

  • Mazeyrat, F., Mouzeyar, S., Courbou, I., Badaoui, S., Roeckel-Drevet, P., de Labrouhe, D.T. and Ledoigt, G. 1999. Accumulation of defense related transcripts in sunflower hypocotyls (Helianthus annuus L.) infected with Plasmopara halstedii. Eur. J. Plant Path. 105, 333340.

    Google Scholar 

  • Mehdy, M.C. 1994. Active oxygen species in plant defence against pathogens. Plant Physiol. 105, 467–472.

    PubMed  CAS  Google Scholar 

  • Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W. and Young, N.D. 2001. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332.

    Article  Google Scholar 

  • Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyssbenz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic-acid at the onset of systemic acquired resistance in cucumber. Science 250, 1004–1006.

    Article  PubMed  Google Scholar 

  • Michelmore, R.W. 2000. Genomic approaches to plant disease resistance. Curr. Opin. Plant Biol. 3, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Lam, E. Shulaev, V. and Cohen, M. 1999. Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco. Plant Mol. Biol. 39, 1025–1035.

    CAS  Google Scholar 

  • Navarre, D.A. and Wolpert, T.J. 1999. Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11, 237–249.

    PubMed  CAS  Google Scholar 

  • Oldroyd, G.E.D. and Staskawicz, B. J. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. USA. 95, 10300–10305.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, J.A., Paiva, N.L, Lamb, C. and Dixon, R.A. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10, 281–293.

    Article  CAS  Google Scholar 

  • Pan, Q., Wendel, J. and Ruhr, R. 2000. divergent evolution of plant nbs-lrr resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50, 203–213.

    Google Scholar 

  • Parker, J.E., Feys, B.J., van der Biezen, E.A., Noël, L., Aarts, N., Austin, M.J., Botella, M.A., Frost, L.N., Daniels, M.J. and Jones, J.D.G. 2000. Unravelling R gene-mediated disease resistance pathways in Arabidopsis. Mol. Plant Path. 1, 17–24.

    Article  CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen R., Mattsson, O., Jensen, A.B. and Mundy, J. 2000. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120.

    CAS  Google Scholar 

  • Pieterse, C.M.J. and van Loon, L.C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58.

    Article  PubMed  Google Scholar 

  • Pieterse, C.M.J., van Wees, S.C.M. Hoffland, E. van Pelt, J.A. and van Loon, L.C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8, 1225 1237.

    Google Scholar 

  • Pieterse, C.M.J., van Wees, S.C.M., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, N., Weisbeek, P.J. and van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571–1580.

    CAS  Google Scholar 

  • Piffanelli, P., Devoto, A. and Schulze-Lefert, P. 1999. Defence signaling pathways in cereals. Curr. Opin. Plant Biol. 2, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, T. and Somerville, S. 2000. Chasing the dream: plant EST micro-arrays. Curr. Opin. Plant Biol. 3, 108–116.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M.R. and Bowles, D.J. 1999. Fusicoccin, 14–3–3 proteins, and defense responses in tomato plants. Plant Physiol. 119, 1243 – 1250.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, T., Piedras, P., Zhang, S.Q., Klessig, D.F., Hirt, H. and Jones, J.D.G. 1999. Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287.

    PubMed  CAS  Google Scholar 

  • Ross, A.F. 1961a. Localized acquired resistance to plant virus infections in hypersensitive hosts. Virology 14, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Ross, A.F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358.

    Article  PubMed  CAS  Google Scholar 

  • Rushton, P.J. and Somssich, I.E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Rushton, P.J. and Somssich, I.E. 1999. “Transcriptional regulation of plant genes responsive to pathogens and elicitors”. In: Plant-Microbe Interactions. eds. G. Stacey and N.T. Keen, pp. 251–274. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y. and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8, 1809–1819.

    PubMed  CAS  Google Scholar 

  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S., and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by micro-array analysis. Proc. Natl. Acad. Sci. USA 97, 11655–11660.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, P., Pokorny, J. Schulze-Lefert, P. and Dudler, R. 2000. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant Journal 24, 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S.R., Tobias, C.M., Rathjen, J.P., Chang, J.H., Lavelle, D.T., Michelmore, R.W. and Staskawicz, B.J. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063–2065.

    Article  PubMed  CAS  Google Scholar 

  • Scott, K.J., Davidson, A.D., Jutidamrongphan, W., Mackinnon G. and Manners, J.M. 1990. The activation of genes of wheat and barley by fungal phytopathogens. Aust. J. Plant Physiol. 17, 229–238.

    Article  CAS  Google Scholar 

  • Seehaus, K. and Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea. Plant Mol. Biol. 38, 1225–1234.

    Article  CAS  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A. and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261–270.

    PubMed  CAS  Google Scholar 

  • Shulaev, V., Leon, J. and Raskin, I. 1995. Is salicylic acid a translocated signal of systemic acquired-resistance in tobacco. Plant Cell 7, 1691–1701.

    PubMed  CAS  Google Scholar 

  • Skou, J.P. 1982. Callose formation responsible for the powdery mildew resistance in barley with genes in the ml-o locus. Phytopathologische Zeitschrift 104, 90–95.

    Article  Google Scholar 

  • Smith-Becker, J., Marois, E., Huguet, E.J., Midland, S.L., Sims, J.J. and Keen, N.T. 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol. 116, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Stakman, E.C. 1915. Relation between Puccinia graminis and plants highly resistant to its attack. J. Agricult. Res. 4, 193–200.

    Google Scholar 

  • Stark-Lorenzen, P., B. Nelke, G. Hanssler, H.P. Muhlbach, and J.E. Thomzik. 1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L). Plant Cell Rep. 16, 668–673.

    Article  CAS  Google Scholar 

  • Takken, F.L.W. and Joosten, M.H. 2000. Plant resistance genes: their structure, function and evolution. Eur. J. Plant Path. 106, 699–713.

    Article  CAS  Google Scholar 

  • Tang, X.Y., Frederick, R.D., Zhou, J.M., Halterman, D A, Jia, Y. and Martin, G.B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274, 2060–2063.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Thomzik, J E, Stenzel K., Stocker, R., Schreier, P.H.,Hain, R. and Stahl, D.J. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Path. 51, 265278.

    Google Scholar 

  • Thordal-Christensen, H., Brandt, J., Cho, B.H., Rasmussen, S.K., Gregersen, P.L., Smedegaard-Petersen, L. and Collinge, D.B. 1992. cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus

    Google Scholar 

  • Erysiphe graminis. Physiol. Mol. Plant Pathol. 40, 395–409.

    Google Scholar 

  • Thordal-Christensen, H., Gregersen, P.L. and Collinge, D.B. 2000. “The barleylBlumeria (syn. Erysiphe) graminis interaction: a case study.” In: Mechanisms of Resistance to Plant Diseases. eds. A.J. Slusarenko, R.S.S. Fraser, and L.C. van Loon, pp. 77–100. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z.G., Wei, Y.D. and Collinge, D.B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Thulke, O. and Conrath, U. 1998. Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J. 14, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Tropf, S., Lanz, T, Rensing, S.A., Schroder, J. and Schroder, G. 1994. Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J. Mol. Evol. 38, 610–618.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, J., Gage, D.A., Hammerschmidt, R., and Somerville, S.C. 1992. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol. 98, 1304–1309.

    Article  CAS  Google Scholar 

  • Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A.J., Ward, E. and Ryals, J. 1992. Acquired-resistance in Arabidopsis. Plant Cell 4, 645–656.

    CAS  Google Scholar 

  • van Loon, L.C. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. Virology 40, 199–211.

    Article  Google Scholar 

  • van Loon, L.C., Bakker, P.A. and Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopath. 36, 453–483.

    Article  Google Scholar 

  • van Loon, L.C., Pierpoint, W.S., Boller, T. and Conejero, V. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol.Rep. 12, 245–264.

    Article  Google Scholar 

  • van Loon, L.C. and van Strien, E.A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Path. 55, 85–97.

    Article  Google Scholar 

  • van Peer, R., Niemann, G.J. and Schippers, B. 1991. Induced resistances and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 91, 728–734.

    Article  Google Scholar 

  • Vanacker, H., Harrison, J., Ruisch, J., Carver, T.L.W. and Foyer, C.H. 1998. Antioxidant defences of the apoplast. Protoplasma 205, 129–140.

    Article  CAS  Google Scholar 

  • VanEtten, H. D., Mansfield, J. W. Bailey, J. A. and Farmer, E. E. 1994. Two classes of plant antibiotics–phytoalexins versus phytoanticipins. Plant Cell 6, 1191–1192.

    PubMed  CAS  Google Scholar 

  • VanEtten, H. D., Sandrock, R.W., Wasmann, C.C., Soby, S.D., McCluskey, K. and Wang, P. 1995. Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can. J. Bot. 73, S518 - S525.

    Article  CAS  Google Scholar 

  • Vera-Estrella, R., Barkla, B.J., Higgins, V.J. and Blumwald, E. 1994. Plant defence response to fungal pathogens, activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol. 104, 209–215.

    PubMed  CAS  Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959–965.

    PubMed  CAS  Google Scholar 

  • von Röpenack, E., Parr, A. and Schulze-Lefert, P. 1998. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J. Biol. Chem. 273, 9013–9022.

    Article  Google Scholar 

  • Wang, H., Li, J., Bostock, R.M. and Gilchrist, D.G. 1996. Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8, 375–391.

    PubMed  CAS  Google Scholar 

  • Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Métraux, J.-P. and Ryals, J.A. 1991. Coordinate gene activity in response to agents that induce systemic acquired-resistance. Plant Cell 3, 1085–1094.

    PubMed  CAS  Google Scholar 

  • Wei, G., Kloepper, J.W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletrotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81, 1508–1512.

    Article  Google Scholar 

  • White, R.F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 410–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Collinge, D.B., Borch, J., Madriz-Ordeñana, K., Newman, MA. (2001). The Responses of Plants to Pathogens. In: Hawkesford, M.J., Buchner, P. (eds) Molecular Analysis of Plant Adaptation to the Environment. Springer Handbook Series of Plant Ecophysiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9783-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9783-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5826-3

  • Online ISBN: 978-94-015-9783-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics