Skip to main content

Part of the book series: Springer Handbook Series of Plant Ecophysiology ((KLEC,volume 1))

Abstract

Early successes in breeding crop plants for increased yields resulted in selection for high nutrient requirements and high soil fertility. This often necessitated high inputs of fertilizers and soil ameliorants in order to achieve optimum yields and product quality. The costs involved and the environmental damage that often resulted from this approach has led to attempts to reduce mineral nutrient inputs and better fit crop plants to soils. This has been particularly important in agricultural production from infertile tropical and sub-tropical soils. The approach requires plant genotypes with high nutrient efficiency and tolerance to nutrient stresses. To help in production of such genotypes, the physiological responses of plants to nutrient stresses and the genetic controls involved in adaptation to those stresses need to be understood by those involved in plant improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ae, N., Arihara, J., Okada, K., Yoshihara, T. and Johansen. C. 1990. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Barber, S.A., Walker, J.M., and Vasey, E.H. 1962. Principles of ion movement through the soil to the plant root. Trans. Joint Meeting Commission IV and V Internat. Soil Sci., New Zealand 1962. pp. 121–124.

    Google Scholar 

  • Bariola, P.A., Howard, C.J., Taylor, C.B., Verburg, M.T., Jaglan, V.D. and Green, P.J. 1994. The Arabidopsis ribonuclease gene RNS 1 is tightly controlled in response to phosphorus starvation. Plant J. 6, 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Barry, D.A.J. and Miller, M.H. 1989. Phosphorus nutritional requirements of maize seedlings for maximum yield. Agron J. 81, 95–99.

    Article  Google Scholar 

  • Bates, T.R. and Lynch, J.P. 1996 Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 19, 529–538.

    Article  CAS  Google Scholar 

  • Bates, T.R. and Lynch, J.P. 2000. The efficiency of Arabidopsis root hairs in phosphorus acquisition. Amer. J. Bot. 87, 964–970.

    Article  CAS  Google Scholar 

  • Bieleski, R.L. and Lauchli, A. 1992. Phosphate uptake, efflux and deficiency in the water fern, Azolla. Plant Cell Environ. 15, 665–673.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., Ayoubi, P., Borchert, P., Bressan, R.A., Bumap, R.L., Cushman, J.C., Cushman, M.A., Deyholos, M., Fischer, R., Galbraith, D.W., Hasegawa, P.M., Jenks, M., Kawasaki, S., Koiwa, H., Kore-eda, S., Lee, B-H., Michalowski, C.B., Misawa, E., Nomura, M., Ozturk, N., Postier, B., Prade, R., Song, C-P., Tanaka, Y., Wang, H. and Zhu, J-K. 2001. A genomics approach towards salt tolerance. Plant Physiol. Biochem. 39, 295–311.

    Article  CAS  Google Scholar 

  • Carswell, M.C., Grant, B.R. and Plaxton, W.C. 1997. Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta 203, 67–74.

    PubMed  CAS  Google Scholar 

  • Chiou, T-J., Liu, H. and Harrison, M.J. 2001. The spatial expression patterns of a phosphate transporter (MtPtl) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J. 25, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, D.T. and Scattergood, C.B. 1982. Growth and phosphate transport in barley and tomato plants during development of and recovery from phosphate stress. J. Exp. Bot. 33, 865–875.

    Article  CAS  Google Scholar 

  • Clarkson, D.T. and Lüttge, U. 1991. Mineral nutrition: inducible and repressible nutrient transport systems. Progress in Bot. 52, 61–83.

    Article  Google Scholar 

  • Clarkson, D.T. 1993. Roots and the delivery of solutes to the xylem. Phil. Trans. R. Soc. Lond. B 341, 5–17.

    Article  Google Scholar 

  • Cogliatti, D.H. and Clarkson, D.T. 1983. Physiological changes in phosphate uptake by potato plants during development of and recovery from phosphate deficiency. Physiol. Plant. 58, 287–294.

    Article  CAS  Google Scholar 

  • Daram, P., Brunner, S., Persson, B.L., Amrhein, N. and Bucher, M. 1998. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Daram, P., Brunner, S., Rausch, C., Steiner, C., Amrhein, N. and Bucher, M. 1999. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11, 2153–2166.

    CAS  Google Scholar 

  • De la Fuente-Martinez, J.M., Ramirez-Rodriguez, V., Cabrera-Ponce, J.L. and Herrera-Estrella, L. 1997. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566–1568.

    Article  Google Scholar 

  • Delhaize, E. and Randall, P. 1995. Characterisation of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 107, 207–213.

    CAS  Google Scholar 

  • Delhaize, M., Hebb, D.M., and Ryan, P.R. 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125, 2059–2067.

    Article  PubMed  CAS  Google Scholar 

  • Dinkelaker, B., Romheld, V. and Marschner, H. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12, 285–292.

    Article  CAS  Google Scholar 

  • Dinketaker, B., Hengeler, C. and Marschner, H. 1995. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108, 183–200.

    Google Scholar 

  • Dodds, P.N., Clarke, A.E. and Newbigin, E. 1996. Molecular characterization of an S-like RNase of Nicotiana alata that is induced by phosphorus starvation. Plant Mol. Biol. 31, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Douds, D.D. and Schenck, N.C. 1990. Relationship of colonisation and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol. 116, 621–627.

    Article  CAS  Google Scholar 

  • Drew, M.C. and Saker, L.R. 1978. Nutrient supply and growth of the seminal root system in barley. III. Compensatory changes in growth of lateral roots and in rates of phosphate uptake in response to a localised supply of phosphate. J. Exp. Bot. 29, 435–451.

    Article  CAS  Google Scholar 

  • Duff, S.M.G., Sarath, G. and Plaxton, W.C. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant. 90, 791–800

    Article  CAS  Google Scholar 

  • Foehse, D. and Jungk, A. 1983. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74, 359–368.

    Article  CAS  Google Scholar 

  • Fox, R.L. and Kamprath, E.J. 1970. Phosphate sorption isotherms for evaluating the phosphorus requirement of soils. Soil Sci. Soc. Amer. Proc. 34, 902–907.

    Article  CAS  Google Scholar 

  • Fredeen, A.L., Rao, I.M. and Terry, N. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89, 225–230.

    Article  CAS  Google Scholar 

  • Gardner, W.K., Barber, D.A., Parbery, D.G. 1983. The acquisition of phosphorus by Lupinus albus L.: III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70, 107–124.

    Article  CAS  Google Scholar 

  • Gerke, J. 1992. Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Z. Pflanenernähr. Bodenk. 155, 339–343.

    Article  CAS  Google Scholar 

  • Goldstein, A.H., Mayfield, S.P., Danon, A. and Tibbot, N.K. 1989. Phosphate starvation inducible metabolism in Lycopersicon esculentum. III. Changes in protein secretion under nutrient stress. Plant Physiol. 91, 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, M.J. 1997. The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci.2, 54–60.

    Google Scholar 

  • Harrison, M.J. 1999a. Molecular and cellular aspects of the mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 361–389.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, M.J. 1999b. Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J. Exp. Bot. 50, 1013–1022.

    CAS  Google Scholar 

  • Harrison, M.J. and van Buuren, M.L. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    Article  CAS  Google Scholar 

  • Harley, J.L. and Smith, S.E. 1983. Mycorrhizal Symbiosis, Academic Press, London.

    Google Scholar 

  • Hoffland, E., Boogaard, R.V.D., Nelemans, J. and Findenegg, G. 1992. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol. 122, 675-

    Google Scholar 

  • Hoffland, E., Findenegg, G.R. and Nelemans, J.A. 1989. Solubilization of rockphosphate by rape. 2. Local root exudation of organic acids as a response to P starvation. Plant Soil 113, 161–165.

    Article  CAS  Google Scholar 

  • Huang, C., Barke, S.J., Langridge, P. Smith, F.W. and Graham, R.D. 2000. Zinc deficiency up-regulates expression of high-affinity transporter genes in both phosphate-sufficient and deficient barley roots. Plant Physiol. 124, 415–422.

    CAS  Google Scholar 

  • Jackson, R.B., Manwaring, J.H. and Caldwell, M.M. 1990. Rapid physiological adjustment of roots to localised soil enrichment. Nature 344, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.F., Allan, D.L. and Vance, C.P. 1996. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced phosphoenolpyruvate carboxylase. Plant Physiol. 112, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Kai, M., Masuda, Y., Kikuchi, Y., Osaka, M. and Tadano, T. 1997. Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci. Plant Nutr. 83, 227–235.

    Article  Google Scholar 

  • Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A. and Flügge, U.I. 1998. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105–107

    PubMed  CAS  Google Scholar 

  • Khamis, S., Chaillou, S. and Lamaze, T. 1990. CO2 assimilation and partitioning of carbon in maize plants deprived of orthophosphate. J. Exp. Bot. 41, 1619–1625.

    Article  CAS  Google Scholar 

  • Kock, M., Theierl, K., Stenzel, I. and Glund, K. 1998. Extracellular administration of phosphate-sequestering metabolites induces ribonucleases in cultured tomato cells. Planta 204, 404–407.

    Article  Google Scholar 

  • Lauer, M.J., Blevins, D.G., and Sierzputowska-Graze, H. 1989. 31P-nuclear magnetic resonance determination of phophate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition. Plant Physiol. 89, 1331–1336.

    Google Scholar 

  • Lefebvre, D.D. and Clarkson, D.T. 1984. Compartmental analysis of of phosphate in roots of intact barley seedlings. Can. J. Bot. 65, 1504–1508.

    Article  Google Scholar 

  • Lefebvre, D.D., Duff, S.M.G., Fife, C. Julien-Inalsingh, C. and Plaxton, W.C. 1990. Response to phosphate deprivation in Brassica nigra suspension cells. Enhancement of intracellular, cell surface and secreted phosphatase activities compared to increases in R-adsorption rate. Plant Physiol. 93, 504–511.

    CAS  Google Scholar 

  • Lefebvre, D.D. and Glass, A.D.M. 1982. Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction in influx with provision of orthophosphate. Physiol. Plant. 54, 199–206.

    Article  CAS  Google Scholar 

  • Leggewie, G., Willmitzer, L. and Reismeier, J.W. 1997. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9, 381–392.

    PubMed  CAS  Google Scholar 

  • Lipton, D.S., Blancher, R.W. and Blevins, D.G. 1987. Citrate, malate and succinate concentrations in exudates from P-starved Medicago sativa L. seedlings. Plant Physiol. 85, 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., Muchhal, U.S., Uthappa, M., Kononowicz, A.K. and Raghothama, K.G. 1998a. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Trieu, A.T., Blaycock, L.A. and Harrison, M.J. 1998b. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorhizal (AM) fungi. Mol. Plant Microbe. Interact. 11, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio, J., Martinez de la Vega, O., Guevara-Garcia, A. and Herrera-Estrella, L. 2000a. Enhanced phosphorus uptake in transgenic tobacco that overproduce citrate. Nature Biotech. 18, 450–453.

    CAS  Google Scholar 

  • Lopez-Bucio, J., Ramirez-Rodriguez, V. and Herrera-Estrella, L. 2000b. Improving phosphate acquisition efficiency in transgenic plants by citrate overproduction. AgBiotechNet 2, 1–3.

    Google Scholar 

  • Lynch, J., Lauchli, A. and Epstein, E. 1991. Vegetative growth of the common bean in response to phosphorus nutrition. Crop Sci. 31. 380–387.

    Article  CAS  Google Scholar 

  • Lynch, J.P. 1995. Root architecture and plant productivity. Plant Physiol. 109, 7–13.

    PubMed  CAS  Google Scholar 

  • Lynch. J.P. and Beebe, S.E. 1995. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availablility. Hortscience 30, 1165–1171.

    Google Scholar 

  • Ma, J.F. 2000. Role of organic acids in detoxification of aluminium in higher plants. Plant Cell Physiol. 41, 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Bielenberg, D.G., Brown, K.M. and Lynch, J.P. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ. 24, 459–467.

    Article  CAS  Google Scholar 

  • Marschner, H. 1995 Mineral Nutrition of Higher Plants. 2°d edition. Academic Press, London. Marschner, H., Romheld, V. and Cakmak, I. 1987. Root-induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 10, 1175–1184.

    Google Scholar 

  • McPharlin, I.R. and Bieleski, R. 1989. Pi efflux and influx by P-adequate and P-deficient Spirodela and Lemna. Aust. J. Plant Physiol. 16, 391–399.

    Article  CAS  Google Scholar 

  • Mimura, T. 1995. Homeostasis and transport of inorganic phosphate transport in plants. Plant Cell Physiol. 36, 1–7.

    CAS  Google Scholar 

  • Mimura, T. 1999. Regulation of phosphate transport and homeostasis in plant cells. Int. Rev. Cytology 191, 149–200.

    Article  CAS  Google Scholar 

  • Mimura, T., Dietz, K-J., Kaiser, W., Schramm, M.J., Kaiser, G. and Heber, U. 1990. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves. Planta 180, 139–146.

    Article  CAS  Google Scholar 

  • Mimura, T., Sakano, K. and Shimmen, T. 1996. Studies on distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant Cell Environ. 19, 311–320.

    Article  CAS  Google Scholar 

  • Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S. and Shibata, D. 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad Sci. USA 94, 7098–7102.

    Article  PubMed  CAS  Google Scholar 

  • Muchhal, U.S., Pardo, J.M. and Raghothama, K.G. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 93, 10519–10523.

    Article  CAS  Google Scholar 

  • Muchhal, U.S. and Raghothama, K.G. 1999. Transcriptional regulation of plant phosphate transporters. Proc. Natl. Acad. Sci USA 96, 5868–5872.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, M. and Beevers, H. 1978. Hydrolases in vacuoles from castor bean endosperm. Plant Physiol. 62, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, N., DeRisi, J. and Brown, P.O. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Molec. Biol. Cell 11, 4309–432

    Article  PubMed  CAS  Google Scholar 

  • Ohwaki, Y. and Hirata, H. 1992. Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid levels in roots. Soil Sci. Plant Nutr. 38, 235–243.

    Article  CAS  Google Scholar 

  • Oshima, Y., Ogawa, N. and Harashima, S. 1996. Regulation of phosphatase synthesis in Saccharomyces cerevisiae - a review. Gene 179, 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Pao, S.S., Paulsen, I.T. and Saier, M.H. 1998. Major facilitator superfamily. Microbiol. Molec. Biol. Rev. 62, 1–34.

    CAS  Google Scholar 

  • Pearson, J.N. and Jakobsen, I. 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 124, 481–488.

    Article  CAS  Google Scholar 

  • Pilbeam, D.J., Cakmak, I., Marschner, H. and Kirkby, E.A. 1993. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant Soil 154, 111–117.

    Article  CAS  Google Scholar 

  • Plaxton, W.C. and Carswell, M.C. 1999. “Metabolic Aspects of the phosphate starvation response in plants”. In: Plant Responses to Environmental Stresses; from Phytohormones to Genome Reorganisation, ed. H. R. Lerner. pp. 349–372. Marcel Dekker, New York.

    Google Scholar 

  • Plaxton, W.C. 1996. The organisation and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 185–214.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, Y., Thomas, S., Somerville, C. and Scheifelbein, J. 1991. A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97, 1087–11093

    Article  PubMed  CAS  Google Scholar 

  • Raghothama, K.G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer, H.M. 1966. “Mineral nutrients in soil solution”. In: Environmental Biology, eds P.L. Altman and D.S. Dittmer. pp 507–508. Fed. Amer. Soc. Exp. Biol., Bethesda.

    Google Scholar 

  • Rolland, R.H., Contard, P. and Betsche, T. 1996. Adaptation of pea to elevated atmospheric CO2: rubisco, phosphoenolpyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrogen and phosphorus nutrition. Plant Cell Environ. 19, 109–117.

    Article  Google Scholar 

  • Rosewame, G.M., Barker, S.J., Smith, S.E., Smith, F.A. and Schachtman, D.P. 1999. A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol. 144, 507–516.

    Article  Google Scholar 

  • Rossiter, R.C. 1978. Phosphorus deficiency and flowering in subterranean clover (Tr. subterraneum L.). Ann. Bot. 42, 325–329.

    CAS  Google Scholar 

  • Ryan, P.R., Delahaize, E. and Randall, P.J. 1995. Characterisation of Al-stimulated malate efflux from the root apices of Al-tolerant genotypes of wheat. Planta 196, 103–110.

    Article  CAS  Google Scholar 

  • Smith, F.W., Jackson, W.A. and Van den Berg, P.J. 1990. Internal phosphorus flows during development of phosphorus stress in Stylosanthes hamata. Aust. J. Plant Physiol, 17, 451–464.

    Article  CAS  Google Scholar 

  • Smith, F.W., Ealing, P.M., Dong, B. and Delhaize, E. 1997. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11, 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Smith, F.W., Cybinski, D. and Rae, A.L. 1999. “Regulation of expression of genes encoding phosphate transporters in barley roots”. In: Plant Nutrition — Molecular Biology and Genetics, eds. G. Gissel-Nielsen and A. Jensen. pp. 145–150. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Smith, F.W., Rae, A.L. and Hawkesford, M.J. 2000. Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Smith, F.W. 2001. Sulphurus and phosphorus transport systems in plants Plant Soil 232, 109–118.

    Article  CAS  Google Scholar 

  • Smith, S.E. and Read, D.J. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego.

    Google Scholar 

  • Stark, D.M., Timmerman, K.P., Barry, G.F., Priess, J. and Kilshore, G.M. 1992. Regulation of the amount of starch in tissues by ADP glucose pyrophosphorylase. Science 258, 341–351.

    Article  Google Scholar 

  • Staunton, S. and Leprince, F. 1996. Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bio-availability. Eur. J. Soil Sci. 47, 231–239.

    Article  CAS  Google Scholar 

  • Wang, R., Guegler, K., LaBrie, S.T. and Crawford, N.M. 2000. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12, 1491–1509.

    PubMed  CAS  Google Scholar 

  • Welch, R.W., Webb, M.J. and Loneragan, J.F. 1982. “Zinc in membrane function and its role in phosphorus toxicity”. In: Plant Nutrition 1982, Proc 9th Intern. Plant Nutrition Colloq., Warwick, UK, ed. A Scaife. pp. 710–715. CAB International, Farnham Royal, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, F.W. (2001). Plant Responses to Nutritional Stresses. In: Hawkesford, M.J., Buchner, P. (eds) Molecular Analysis of Plant Adaptation to the Environment. Springer Handbook Series of Plant Ecophysiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9783-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9783-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5826-3

  • Online ISBN: 978-94-015-9783-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics