Skip to main content

Nonstandard Construction of Stable Type Euclidean Random Field Measures

  • Chapter

Part of the book series: Synthese Library ((SYLI,volume 306))

Abstract

A nonstandard construction of stable type Euclidean random fields via hyperfinite flat integrals and stable white noise is given. Moreover, a brief account on an extension of Cutland’s flat integral formula for (centered) Gaussian measures on the Hilbert space l 2 to the case of Banach spaces l p , 1 ≤ p < ∞, is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S., Fenstad, J.E., Hoegh-Krohn R. and Lindstrom T. (1986). Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press.

    Google Scholar 

  2. Albeverio, S. and Wu, J.-L. (1995). Euclidean random fields obtained by convolution from generalized white noise. J. Math. Phys. 36, 5217–5245.

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S. and Wu, J.-L. (1996). A mathematical flat integral realization and a large deviation result for the free Euclidean field. Acta Appl. Math. 45, 317–348.

    MathSciNet  MATH  Google Scholar 

  4. Albeverio, S. and Wu, J.-L. (2000). On hyperfinite integral representation of Euclidean random field measures. Bonn SFB 256-preprint.

    Google Scholar 

  5. Cutland, N.J. (1983). Nonstandard measure theory and its applications. Bull. London Math. Soc. 15, 529–589.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cutland, N.J. (1987). Infinitesimals in action. J. London Math. Soc. 35, 202–216.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cutland, N.J. (1989). The Brownian bridge as a flat integral. Math. Proc. Cambridge Phil. Soc. 106, 343–354.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cutland, N.J. (1990). An action functional for Lévy Brownian motion. Acta Appl. Math., 487–495.

    Google Scholar 

  9. Cutland, N.J. (1991). On large deviations in Hilbert space. Proc. Edinburgh Math. Soc. 34, 487–495.

    MathSciNet  MATH  Google Scholar 

  10. Cutland, N.J. (1990). Nonstandard representation of Gaussian measures. White Noise–Mathematics and Application (eds. Hida, T., Kuo, H.-H., Pottholf, J. and Streit, L.). Singapore: World Scientific, pp 73–92.

    Google Scholar 

  11. Deuschel, J.-D. and Stroock, D.W. (1989). Large Deviations. San Diego: Academic Press.

    Google Scholar 

  12. Fritz, J., Lebowitz, J.L. and Szâsz, D. (Editors) (1981). Random Fields. Rigorous Results in Statistical Mechanics and Quantum Field Theory (Vol. I, II). Colloquia Mathematica Societatis Janos Bolyai 27,, Amsterdam: North-Holland Publishing Co..

    MATH  Google Scholar 

  13. Gelfand, I.M. and Vilenkin, N.Ya. (1964). Generalized Functions, IV. Some Applications of Harmonic Analysis. New York: Academic Press.

    Google Scholar 

  14. Keßler, C. (1984). Nonstandard methods in random fields. Bochum: Dissertation.

    Google Scholar 

  15. Keßler, C. (1988). On hyperfinite representation of distributions. Bull. London Math. Soc. 20, 139–144.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuo, H.-H. (1975). Gaussian Measures in Banach Spaces. Lect. Notes Math. 463. Berlin: Springer-Verlag.

    Google Scholar 

  17. Lindenstrauss, J. and Tzafriri, L. (1977). Classical Banach Spaces. I. Sequence Spaces. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  18. Lindstrom, T. (1988). An invitation to nonstandard analysis. Nonstandard Analysis and Its Applications (ed. by Cutland, N.J.). Cambridge: Cambridge University Press, ppl-105.

    Google Scholar 

  19. Osswald, H. (2000). Infinitesimal in abstract Wiener spaces. To appear in Stochastic Processes, Physics and Geometry: New Interplays. A Volume in Honor of Sergio Albeverio. Proceedings of the Leipzig International Conference on Infinite Dimensional (Stochastic) Analysis and Quantum Physics, the Canadian Mathematical Society (CMS) Conference Proceeings Series.

    Google Scholar 

  20. Rosen, J. and Simon, B. (1975). Global support properties of stationary ergodic processes. Duke Math. J. 42, 51–55.

    MathSciNet  MATH  Google Scholar 

  21. Vakhania, N.N., Tarieladze, V.I. and Chobanyan, S.A. (1987). Probability Distributions on Banach Spaces. Dordrecht: D. Reidel Publishing Company.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albeverio, S., Wu, JL. (2001). Nonstandard Construction of Stable Type Euclidean Random Field Measures. In: Schuster, P., Berger, U., Osswald, H. (eds) Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Synthese Library, vol 306. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9757-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9757-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5885-0

  • Online ISBN: 978-94-015-9757-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics