Linear Interferometers

Part of the Astrophysics and Space Science Library book series (ASSL, volume 268)


In this chapter the problem of the construction of linear interferometers is considered. We mean the interferometers using the Earth rotation, so-called supersynthesis systems. These systems provide the resolution down to fractions of arcsec required in radio astronomical research of the structure of cosmic sources. Such a resolution is not achievable for single radio telescopes.


Radio Telescope Spatial Spectrum Initial Basis Composite Basis Equivalent CDSs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryle, M. A new radio interferometer and its application to the observation of weak radio stars, Proc. Roy. Soc., A, 1952, 211, 351.ADSCrossRefGoogle Scholar
  2. 2.
    Thompson, A. R., Moran, J. M. and Swenson, G. W. Interferometry and Synthesis in Radio Astronomy. Wiley, N. -Y., 1986.Google Scholar
  3. 3.
    Christiansen, W. N. and Högbom, J. A. Radiotelescopes. Cambridge Univ. Press, London, 1984.Google Scholar
  4. 4.
    Leech, J. On the representation of 1,2,…,N by differences, J. London Math. Soc., Pt. 2, 1956, 31, 160.Google Scholar
  5. 5.
    Moffet, A. T. Minimum-redundancy linear arrays, IEEE Trans., Antennas Propag.,1968, AP-16, 172.Google Scholar
  6. 6.
    Wichmann, B. A note on restricted difference bases, J. London Math. Soc., 1963, 38, 465.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Miller, J. C. P. Difference bases, three problems in additive number theory. Computers in Number Theory, A. D. Atkin and B. J. Birch, eds, Acad. Press, London, 1971, p. 299.Google Scholar
  8. 8.
    Bedrosjan, S. D. Non-redundant linear arrays: graph-theoretic approach to minimum redundancy, Proc. IEEE, 1986, 74, 1040.CrossRefGoogle Scholar
  9. 9.
    Kopilovich, L. E. Minimization of the number of elements in large radio telescopes, MNRAS, 1995, 274, 544.Google Scholar
  10. 10.
    Redei, L. and Renyi, A. On the representation of 1,2,…,17 by differences, Matematicheskii sbornik, 1949, 24 (66), 385 (in Russian).Google Scholar
  11. 11.
    Baumert, L. D. Cyclic Difference Sets. Lect. Notes in Math., 182, Springer, Berlin, 1971.Google Scholar
  12. 12.
    Kopilovich, L. E. New approach to constructing two-dimensional aperture synthesis systems, IEE Proc. -F, 1992, 139, 365.Google Scholar
  13. 13.
    Golay, M. Note on the representation of 1,2,…,N by differences, J.London Math. Soc., Pt. 2, 1972, 4, 729.Google Scholar
  14. 14.
    McGilchirst, J. E., J. E. Baldwin, J. M., Riley, J. M., et al. The 7C survey of radio sources, MNRAS, 1990, 246, 110.ADSGoogle Scholar
  15. 15.
    Hales, S. E. G., Baldwin, J. E., and Warner, P. J. The 6C survey of radio sources-11, MNRAS, 1986, 234, 919.ADSGoogle Scholar
  16. 16.
    Rees, N. A deep 38-MHz radio survey of the area delta 60, MNRAS, 1990, 244, 233.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Institute of Radio Physics and ElectronicsNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Institute of Radio AstronomyNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations