Skip to main content

Process-Orientated Metabolic Engineering: Cell Lines with New Properties in Nutrient Exploitation and Protein Glycosylation

  • Chapter
Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology
  • 592 Accesses

Abstract

Although well accepted as reliable and safe production hosts for manufacturing pharmaglyco-proteins, continuous mammalian cell lines, to a large extent, have the metabolic disadvantages of being unable to completely oxidize glucose and to secrete precisely processed human-type glycoproteins. Metabolic engineering has been shown to have a considerable impact on the improvement of CCLs. In general, three different major strategies can be distinguished. First, the generation of proliferation-controlled cells by introducing genes affecting cell growth. Second, modifications of the protein-processing machinery by introducing specific glycosyltransferases and third, strategies to reconstitute the cellular metabolism. The modification of the primary metabolism, however, is believed to be hard to manipulate because the primary metabolism network is very complex and rigid. Therefore, hardly any efforts towards a reconstitution and improvement of the primary metabolism by metabolic engineering have been undertaken in mammalian cell lines so far. Only strategies that activate channels for glycolytic metabolites to the TCA, resulting in a complete oxidation of glucose, or those, which reactivate the primary end products for energy production, can overcome the basic problems of CCLs. By introducing a low-KM hexokinase, the energy level of mammalian cell lines could be substantially elevated resulting in higher productivity. In addition, glucose carbons could be more efficiently channeled into the TCA by a yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells. This strategy enables the cells to transfer glycolysis-derived pyruvate into malate, which can enter the TCA cycle for complete oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, S.L., Bebbington, C., Scott, M.F., Wardell, J.N., Spier, R.E., Bushell, M.E., and Sanders, P.G. Genetic engineering of hybridoma glutamine metabolism. Enzyme Microb. Technol. 17 (1995): 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Brewster, N.K., Val, D.L., Walker, M.E, and Wallace, J.C. Regulation of pyruvate carboxylase isoenzyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfer-mentative growth. Arch. Biochem. Biophys. 311 (1994): 62–71.

    Article  PubMed  CAS  Google Scholar 

  • Bragonzi, A., Distefano, G., Buckberry, L.D., Acerbis, G., Foglieni, C., Lamotte, D., Campi, G., Marc, A., Soria, M.R., Jenkins, N., and Monaco, L. A new Chinese hamster ovary cell expressing α2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta 1474 (2000): 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Brand, K. Glutamine and glucose metabolism during thymocyte proliferation. Biochem. J. 228 (1985): 353–361.

    PubMed  CAS  Google Scholar 

  • Çayli, A., Hirschmann, F., Wirth, M., Hauser, H., and Wagner, R. Cell lines with reduced UDP-N-acetylhexosamine pool to control protein glycosylation in the presence of ammonium. Biotechnol. Bioeng. 65(1999): 192–200.

    Article  PubMed  Google Scholar 

  • Chen, K., Liu, Q., Liangzhi, X., Sharp, P.A., and Wang, D.I.C. Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol. Bioeng. 72 (2001): 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Europa, A.F., Gambhir, A., Fu, P.-C., and Hu, W.-S. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol. Bioeng. 67 (2000): 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Fiechter, A., and Gmünder, F.K. Metabolic control of glucose degradation in yeast and tumor cells. Adv. Biochem. Eng. Biotechnol. 39 (1989): 1–28.

    CAS  Google Scholar 

  • Fitzpatrick, L., Jenkins, H.A., and Butler, M. Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture. Appl. Biochem. Biotech. 43 (1993): 93–116.

    Article  CAS  Google Scholar 

  • Fussenegger, M., Bailey, J.E., Hauser, H., and Mueller, P.P. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 17 (1999): 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger, M., Schlatter, S., Dätwyler, D., Mazur, X., and Bailey, J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nature Biotechnol. 16 (1998): 468–472.

    Article  CAS  Google Scholar 

  • Gawlitzek, M., Valley, U., and Wagner, R. Ammonium ion/glucosamine dependent increase of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 57 (1998): 518–528.

    Article  PubMed  CAS  Google Scholar 

  • Geserick, C., Bonarius, H.P.J., Kongerslev, L., Hauser, H., and Mueller, P.P. Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol. Bioeng. 69 (2000): 266–274.

    Article  PubMed  CAS  Google Scholar 

  • Grammatikos, S.I., Valley, U., Nimtz, M., Conrad, H.S., and Wagner, R. Intracellular UDP-N-acetyl-hexosamine pool affects N-glycan complexity: A mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 14 (1998): 410–419.

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich, S., Stäsche, R., Zeitler, R., and Reutter, W. A bifunctional enzyme catalyzes the first two Stepps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/iV-acetylmannosamine kinase. J. Biol. Chem. 272 (1997): 24313–24318.

    Article  PubMed  CAS  Google Scholar 

  • Irani, N., Wirth, M., van den Heuvel, J., and Wagner, R. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol. Bioeng. 66 (1999): 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.H., Iida, T., Fujita, T., Terada, S., Kitayama, A., Ueda, H., Prochownik, E.V., and Suzuki, E. Establishment of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible c-Jun gene. Biotechnol. Bioeng. 58 (1998): 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff, S., Schaper, F., and Hauser, H. Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes. Nucleic Acids Res. 21 (1993): 2881–2889.

    Article  PubMed  CAS  Google Scholar 

  • Köster, M., Kirchhoff, S., Schaper, F., and Hauser, H. Proliferation control of mammalian cells by the tumor suppressor IRF-1. Cytotechnology 18 (1995): 67–75.

    Article  PubMed  Google Scholar 

  • Massey, T.H., and Deal, W.C. Phosphofructokinases from porcine liver and kidney and from other mammalian tissues. Meth. Enzymol. XLII (1982): 99–110.

    Google Scholar 

  • Mazur, X., Fussenegger, M., Renner, W.A., and Bailey, J.E. Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol. Prog. 14 (1998): 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P.P., Schlenke, P., Nimtz, M., Conradt, H.S., and Hauser, H. Recombinant glycoprotein product quality in proliferation-controlled BHK-21 cells. Biotechnol. Bioeng. 65 (1999): 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Neermann, J., Wirth, M., and Wagner, R. Metabolic characterization of recombinant BHK cell lines expressing rat brain hexokinase. Presented at the 14th ESACT-Meeting, Vilamoura, Portugal, 1996.

    Google Scholar 

  • Neermann, J., and Wagner, R. Comparitive analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J. Cell. Physiol. 166 (1996): 152–169.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, P., Gordon, S., and Newsholme, E.A. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem. J. 242 (1987): 631–636.

    PubMed  CAS  Google Scholar 

  • Park, H., Kim, I.H., Kim, I.Y., Kim, K.H., and Kim, H.J. Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr cells decreases accumulation of ammonium ion in culture media J. Biotechnol. 81 (2000): 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Pendse, G.J., and Bailey J.E. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells. Biotechnol. Bioeng. 44(1994): 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  • Petch, D., and Butler, M.A. Profile of energy metabolism in a murine hybridoma: Glucose and glutamine utilization. J. Cell. Physiol. 161 (1994): 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Prati, E.G.P., Scheidegger, P., Sburlati, A.R., and Bailey, J.E. Antisense strategies for glycosylation engineering of Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 59 (1998): 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Rees, D.W., and Hay, S.M. The biosynthesis of threonine by mammalian cells: expression of a complete bacterial biosynthethic pathway in an animal cell. Biochem. J. 309 (1995): 999–1007.

    PubMed  CAS  Google Scholar 

  • Ryll, T. Improving glycosylation of recombinant glycoproteins by metabolic engineering of UDP-galactose and CMP-NANA pools in CHO cells. Presented at the Cell Culture Engineering VII Meeting, Santa Fe NM, USA, 2000.

    Google Scholar 

  • Sburlati, A. R., Umana, P., Prati, G.P., and Bailey, J.E. Synthesis of bisected glycoforms of recombinant IFN-β-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol. Prog. 14 (1999): 189–192.

    Article  Google Scholar 

  • Schlenke, P., Grabenhorst, E., Wagner, R., Nimtz, M., and Conradt, H.S. Expression of human α2,6-sialyltransferase in BHK-21 A cells increases the sialylation of coexpressed human erythropoietin: NeuAc-transfer onto GalNAc(β1–4)GlcNAc-R motives. In: Carrondo, M.J.T., Griffiths, J.B., Moreira, J.L.P. (eds.), Animal Cell Technology: From Vaccines to Genetic Medicine. Kluwer Acad. Pub., Dordrecht/NL, pp. 475–480, 1997.

    Chapter  Google Scholar 

  • Schwab, D., and Wilson, J.E. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc. Natl. Acad. Sci. U.S.A. 68 (1989): 2563–2567.

    Article  Google Scholar 

  • Schwab, D.A., and Wilson, J.E. The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA. J. Biol. Chem. 263 (1988): 3220–3224.

    PubMed  CAS  Google Scholar 

  • Schwab, D.A., and Wilson, J.E. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc. Natl. Acad. Sci. U.S.A. 86 (1989): 2563–2567

    Article  PubMed  CAS  Google Scholar 

  • Stucka, R., Dequin, S., Salmon, J.M., and Gancedo, C. DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol. Gen. Genet. 229 (1991): 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Tarricone, C., Calogero, S., Glizzi, A., Coda, A., Ascenzi, P., and Bolognesi, M. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the homodimeric bacterial hemoglobin from Vitreoscilla stercoraria. Proteins: Structure, Function and Genetics 27 (1997): 154–156.

    Article  CAS  Google Scholar 

  • Valley, U., Nimtz, M., Conradt, H.S., and Wagner, R. Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol. Bioeng. 64 (1999): 401–417.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.E., Val, D.L., Rohde, M., Devenish, R.J., and Wallace, J.C. Yeast pyruvate carboxylase: Identification of two genes encoding isoenzymes. Biochem. Biophys. Res. Commun. 176 (1991): 1210–1217.

    Article  PubMed  CAS  Google Scholar 

  • Weikert, S., Papc, D., Briggs, J., Cowfer, D., Tom, S., Gawlitzek, M., Lofgren, J., Mehta, S., Chisholm, V., Modi, N., Eppler, S., Carroll, K., Chamow, S., Peers, D., Berman, P., and Krummen, L. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nature Biotechnol. 17 (1999): 1116–1121.

    Article  CAS  Google Scholar 

  • Weiss, P., Tietze, F., Gahl, W.A., Seppala, R., and Ashwell, G. Identification of the metabolic effect in sialuria. J. Biol. Chem. 265 (1989): 17635–17636.

    Google Scholar 

  • Wilson, J.E. Regulation of mammalian hexokinase activity. In: Beitner, R., ed. Regulation of carbohydrate metabolism. CRC Press, Inc. Boca Raton, USA pp. 45–86, 1985.

    Google Scholar 

  • Yang, M., and Butler, M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylate. Biotechnol. Bioeng. 68 (2000): 370–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wagner, R. (2001). Process-Orientated Metabolic Engineering: Cell Lines with New Properties in Nutrient Exploitation and Protein Glycosylation. In: Merten, OW., et al. Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9749-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9749-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5756-3

  • Online ISBN: 978-94-015-9749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics